SOLUTIONS FOR SCAVENGING OF METAL AND ORGANIC IMPURITIES

Founded in 1995, SiliCycle is specialized in the development, manufacturing and commercialization of high value silica gels and specialty products for chromatography, purification and synthesis.

Scavenging Solutions

Scavenging Solutions Overview	. 2
Different Formats for Different Applications	. 8
Silia <i>MetS®</i> Metal Scavengers Portfolio	10
Silia <i>Bond®</i> Organic Scavengers Portfolio	14
SiliaMetS [®] E-PAK [®] Fixed Bed Flow-Through Purification Cartridges	18
Experimental Optimization for Scavengers	22
Silia <i>MetS®</i> Thiol & DMT Stability & Leaching Studies	26
Application Notes & Case Studies SiliaMetS® Metal Scavengers SiliaBond® Organic Scavengers	32 34 68
Ordering Information	76
Contact Us	80

SiliCycle Scavenging Solutions

- Increased R&D and manufacturing productivity
- Versatile (solvents, pH, compatible in batch flow, microwave, etc.)
- Green and environmentaly friendly technology
- Broad scope of metals and organics to be scavenged

SiliaMetS & SiliaBond Silica-Based Scavengers

Chemists have been searching for techniques and tools to separate, isolate and purify chemical substances from one to another to improve the quality of the synthesized molecules. SiliCycle grafted technology enables more powerful purification processes to help reach new purity standards. Our solutions are extremely versatile and customizable, hence suitable for a use in a vast array of industries facing different contamination issues.

Easier & Faster Purification Processes Using Scavengers

- · Broadest portfolio of scavengers with associated applications
- · Great variety of formats for all purifications scales: from laboratory to plant scale
- · Successful technology for a variety of fields, such as pharmaceuticals, organic chemistry labs, agrochemicals and fine chemicals
- · Great compatibility with a myriad of experimental conditions, solvents, pH and temperatures
- · Strong chemical, physical, thermal and mechanical stability

Typical Structure of our Functionalized Silicas with Various Organic Groups

You Can Benefit From Our Scavenging Expertise

At SiliCycle, silica gels are functionalized with various molecules featuring scavenging properties toward different metals and / or organics.

We name our metal scavengers SiliaMetS and our organic scavengers SiliaBond.

This technology combines the benefits of classical purification techniques, while integrating new assets that are becoming more and more critical in modern industries. New purification procedures need to be more selective, more efficient, faster and greener.

It is because of today's strive for greater performance while respecting environmental concerns that silica-based scavengers were developed; they are a powerful tool with an eco-friendly twist:

- Reduced purification steps
 Less solvent needed
- No swelling
- Efficient precious metal recovery
- · No cross-contamination

Why Choose Silica-Based vs Polymer-Based Scavengers?

Silica-based scavengers have been proven to be one of the purification solution of choice. Silica matrices show advantages over polymeric resins in purification, such as:

- No swelling Faster kinetics
- Mechanical & thermal stability · Ease of use
- Solvent independence
- · Controlled & precise loading

Regulatory Information

Regulatory Documents & Information

The SiliCycle scavengers have been used for over decades in pilot plants and production units under GMP conditions by the pharmaceutical industry as well as CMOs and CROs. They have ran their own analysis proving that silica-based scavengers can safely be used, both in reactors or cartridges to purify their compounds.

SiliCycle is committed to high quality standards and always strives to provide superior quality products. In doing so, all products are manufactured in an ISO 9001:2015 compliant facility and subjected to stringent quality control.

SiliCycle provides a Certificate of Analysis with all its products, certifying that every lot has been manufactured and tested in accordance with SiliCycle specifications. Moreover, samples from every lot are kept for subsequent analysis.

All products are shipped with the following information:

- · Certificate of Analysis (molecular loading, surface coverage, volatile content, etc.)
- Safety Data Sheet (SDS)
- Technical information

Regulatory Support File

SiliCvcle can work with you to fill and provide customized regulatory documents, including specific analytical tests in line with your needs.

GMO-Free Certificate

Melamine-Free Certificate

Our Regulatory Support Files (RSF) are documents that include both proprietary and non-proprietary information on performance, chemical / thermal / mechanical stability, extractable & leachable compounds, SOPs, scale-up procedures, batch history, analytical methods and more. RSF documentation can be obtained through a Non-Disclosure Agreement (NDA).

For any inquiries, please contact: regulatorysupport@silicycle.com

All products can be shipped with the following information, under request:

BSE / TSE declaration (non animal-derived)

SiliaMetS: Scavengers for Metal Impurities

SiliCycle Helps You Achieve Your Goals

In recent years, the time pressure associated with quickly bringing drug candidates to market has increased the number of transition metal-catalysed reactions progressing from lead optimisation to early scale-up. The removal of post-reaction metal residues has become a major issue in the pharmaceutical industry.

Purification of APIs (*Active Pharmaceutical Ingredients*), or Product of Interest from residual metal catalyst by traditional methods (*chromatography, activated carbon, distillation, etc.*) often leads to problems such as high costs, time loss, low efficiency and reduced API yields. To overcome these limitations, SiliCycle's Scavenger Solutions have changed how chemists can purify APIs. Here is the scavenging mechanism:

Pharmaceutical Challenges in Purification

ICH-Q3D Heavy Metal Regulation in the Pharmaceutical Industry

Since June 2013, the International Conference on Harmonisation (*ICH*) has been working on its Q3D guidelines on metal elemental impurities in new drugs and new formulations containing known ingredients. After many revisions and improvements, the final version of the Q3D guidelines was finally accepted and signed off by the ICH Steering Committee in December 2014, hence requiring the entire manufacturing industry and supply chain to meet more stringent regulations.

Since December 2015, twenty-four (24) metals - well-known to act as catalysts or present in solvents - have been indicted and associated with great health risks, and have been assigned distinctive PDE (*Permitted Daily Exposure*) limits. For example, now that ICH Q3D contains Lithium and Barium, we no longer talk of heavy metals impurities but elemental impurities.

Take advantage of SiliCycle's expertise and knowledge in the field of grafting technologies to efficiently address this regulation.

SiliaBond: Scavengers for Organic Impurities

The Importance of Organic Contaminant Removal From APIs

Using excess reagents in organic synthesis is a very common strategy to maximise conversion and product yield. But the benefits of this approach can be outshined when comes the need to purify the final reaction mixture from excess reagents.

In addition, even reagents used in stoechiometric amounts can lead to an uncomplete reaction, and this is far more common than the other way around.

These reagents can either contaminate the API with potentially genotoxic impurities or environmental hazards, or jeopardize subsequent reactions by their reactivity. Indeed, such reagents usually bear nucleophilic, electrophilic, acidic or basic functional groups.

There is a need for simpler work-up and purification processes and our range of organic scavengers can help you from R&D up to manufacturing steps.

Two Ways to Purify API from Organic Contaminants using SiliaBond Organic Scavengers

Method 1: Direct scavenging of the undesired compound to isolate the API

- Silica is bound with a functional group, that will specifically react with a product: either excess reagents (unreacted) or impurities.
- The API is recovered by simple filtration as demonstrated on the following scheme:

Method 2: Catch and release of the API

SiliaBond scavenger is packed in a SPE cartridge:

- Conditioning step: with six to ten hold-up volumes of solvent
- · Loading step: API is loaded and trapped onto the cartridge bed
- Washing step: cartridge is washed to filter excess reagents and / or other impurities
- Elution step: API is eluted, recovered and purified

Removal of Potential Genotoxic Impurities (PGI)

Potential Genotoxic Impurities (PGI) have gained attention due to their carcinogenic character to induce genetic mutations and / or chromosomal rearrangements. These compounds cause DNA damage by various mechanisms such as alkylation or other interactions and lead to mutation of the genetic code.

In situations where formation of PGIs cannot be avoided, an ideal solution would be to perform complete removal of PGIs after the synthesis is completed. For example, recrystallization, preparative chromatography or other downstream processing approaches might be considered. Many disadvantages of using such approaches include: potential yield loss, high solvent consumption, additional time and resources required for process development.

If you want to learn more about these impurity regulations, here are regularly updated websites and work of reference you may rely on:

- International Conference on Harmonisation of Technical **Requirements for Registration of Pharmaceuticals for Human** http://www.ich.org
- The European Medicines Agency ٠ http://www.ema.europa.eu/
- References and On-Going Updates from Regulatory Authorities and Industry Practices Related to Genotoxic Impurities http://www.labcompliance.com/info/links/impurities/genotoxins

SiliCycle's PGI Scavengers

Eleven compounds containing structurally alerting functional groups were studied in SiliCycle labs, and scavenged by at least one of our grafted silica:

	Scavenging Affinity for Various Potentially Genotoxic Impurities									
Alerting Functional Groups	Acetamide	Pyridine N-oxide	Aniline	Phenyl- hydroxylamine	Benzaldehyde	Octaldehyde				
Silia <i>MetS</i> DMT										
SiliaMetS Triamine										
SIIIalWIELS TAALOH										
SiliaBond Tosic Acid										

	Scavenging Affinity for Various Potentially Genotoxic Impurities								
Alerting Functional Groups	Methylmethane sulfonate	Propiolactone	Benzyl bromide	Allyl bromide	1,2-epoxyoctane				
	0, ,0 _S_0_		Br	Br					
Silia <i>MetS</i> DMT									
SiliaMetS Thiourea									
SiliaMetS Triamine									
SiliaMetS TAAcONa									
SiliaBond Tosic Acid									
SiliaBond Tosyl Chloride									

Best scavenger: Good scavenger:

GROUP 1: Aromatic Groups

Purines or Pyrimidines, intercalators, PNAs or PNAHs

GROUP 2: Alkyl & Aryl Groups

Ar^NNO

N-Nitrosamines

Propiolactones Propiosulfones

GROUP 3: Heteroatomic Groups

O S.

Alkyl Esters of

Phosphonates or Sulfonates

`OR

(or C_xH_y)

Ar (or C_xH_x)

N-Acylated Aminoaryls

OH.

,^N`Ar

N-Methylols

Н

C_vH_v) (or C_vH_v

Aziridines

Ar (or C_xH_y)

≈^ht_o

Ar-NO₂

(or C_xH_y)

Nitro

Coumpounds

N or S mustards

(B-haloethyl)

Í

Halo-alkenes

Aza-aryl-N-oxides

Aminoaryls Alkylated aminoaryls

NH₂

År

(or C_xH_y)

Carbamates

(Urethanes)

Ar Ar (or C_xH_y) (or C_xH_y)

Hydrazines

Azo Compounds

(or C_xH_v)

`_x

Primary Halides

(Alkyl & Aryl-CH2)

R N-N

`A

N-Hydroxylaryls

Ar

(or C_xH_x)

Aldehvdes

Epoxides

FWG

Micheal-reactive

Acceptors

Metal & Organic Scavenging Screening Services

This service was specially designed for scientists that are either confronted with a residual impurity that needs to be discarded, or in lower in concentration.

With increasing regulatory requirements (*FDA*, *ICH*) for residual levels of metal catalysts and organic potentially genotoxic impurities (*PGI compounds*), the removal of post-reaction metal residues has become a major issue in the industry. SiliCycle offers a wide range of metal scavengers with its Silia*MetS* line, which significantly facilitates this purification process.

Our scavenging screening services provide solutions to quickly develop the most efficient metal scavenging process providing both time and cost savings. Confidentiality is assured, as in most cases the solution involves working with API and other patented materials, and easy technology transfers are guaranteed.

We will be working with you, in function of your needs. This process optimization work can be carried out and optimized as a slurry in your reactor followed by filtration (*bulk mode*), or via a cartridge in a flow design.

Over the years, SiliCycle has developed a number of screening services to assist customers in their project and help identify solutions for purification problems, at all stages & scales, from R&D to production.

Contact us: services@silicycle.com

Compatibility with Flow & Microwave-Assisted Chemistries

Scavenging can be achieved using Silia*MetS* or Silia*Bond* in flow or microwave chemistry applications. Simply place the silica-based scavenger inside the solid-phase reactors and let the solution to be purified flow through these reactors. Multiple reactors can be placed in series and reactors can be heated to obtain optimum scavenging results.

Metal and organic removal impurity using Silia*MetS* and Silia*Bond* can also be done under microwave irradiation to provide excellent scavenging efficiency in just minutes. Simply mix into a microwave tube the scavenger, the API dissolved in a suitable solvent, and set-up the system with chosen parameters. Usually, five minutes are sufficient for complete scavenging.

Different Formats for Different Applications

Scavengers as Bulk Silica

All our scavengers can be used in bulk directly in your reaction flask or reactor.

All scavengers are available in the following format size: 5 g, 10 g, 25 g, 50 g, 100 g, 250 g, 500 g, 1 kg, 5 kg, 10 kg, 25 kg, etc. Up to multi-ton scale!

- All our scavengers have, by default, the same silica backbone: our SiliaFlash R10030B.
 - Particle Size: 40 63 μm
 - Pore Size: 60 Å
- All our Silia*Flash* silica gels of various particle sizes and pore sizes are available as silica backbones upon request.

Scavengers in SiliaPrep SPE Cartridges

All our scavengers are available in pre-packed SPE cartridges, from 3 mL / 200 mg to 6 mL / 2 g.

Please refer to our Silia*Prep* Ordering Information p. 78 to learn about the different formats available.

Scavengers in SiliaSep Flash Cartridges

All our scavengers are available pre-packed in Flash cartridges.

- SiliaSep flash cartridges From 4 g to 1.6 kg bed weight
- SiliaSep OT (Open Top) flash cartridges From 12 mL / 200 g to 276 mL / 100 g formats
- SiliaSep Industrial Scale cartridges From 2.5 to 41 kg bed weight

Packings can also be tailored to your available equipment & scales.

Scavengers in E-PAK® Fixed Bed Flow-Through Cartridges

E-PAK is a family of radial flow adsorption cartridges developed specifically for pharmaceutical processings.

A proven radial technology that offers high adsorption capacity and flow rate!

E-PAK cartridges are offered in different formats for easy scale up:

- Lab Scale from 8 g to 200 g media weight. Designed to facilitate evaluation of small samples.
- **Pilot Scale** from 875 g to 1.75 kg media weight Provide rapid processing for volumes from 10 to hundreds of liters, and can establish the parameters upon moving to larger scales.
- **Commercial Scale** from 3.5 to 7 kg media weight. Designed for manufacturing operations needing to process batch sizes of > 10,000 liters.

Scavengers in SiliaChrom Guard Cartridges

Protect your HPLC columns and system from damageable metallic impurities!

Scavengers as Guard Cartridges (for HPLC)

Silia*Chrom* HPLC Guard Cartridges are designed to effectively protect both analytical and preparative HPLC columns. The usage of this shorter column is highly recommended to prolong column lifetime and does not alter chromatography. All metals can be prejudicial and very damaging to your column and detector, complicating purification steps, often making them longer, more laborious and less effective.

Crude reaction mixtures can now directly be injected without further metal removal, which will save precious time for the chemist. Another great benefit is that there is much less risk of corroding the equipment by injecting dirty samples.

SiliaChrom Guard Cartridges are cost effective and easy to use as a pre-filter to remove contaminants prior to injection.

SiliCycle is the only one on the market to offer protective guard cartridges filled with metal scavengers to protect your HPLC columns and system from damageable metallic impurities.

SiliaChrom Guard Cartridges Dimensions

Silia*Chrom* Guard Cartridges are available in lengths of 10 - 20 mm and three internal diameters (*ID: 4.0, 10 and 21.2 mm*). The Guard Column internal diameter should be the same as the HPLC column or one size smaller. Never use a guard column with a larger ID than the HPLC column (*risk of efficiency loss*).

Silia <i>Chrom</i> Scav	renger Guard Cartridges	Siliad	hrom Scaven	ger Guard Cart	ridges Format	s
Guard Column Name	Favorite Metal Guard Column	Particle Size	Particle Size Formats Available (internal diameter x l			
Scavenger Packing #	K346	of Sorbent (µm)	4.0 x 10	4.0 x 20	10 x 10	21.2 x 10
	1(340	5	05E-A-N010	05E-A-N020	05E-A-0010	05E-A-T010
Effective Scavenger for:	Pd, Ag, Hg, Ir, Ni, Os, Pt, Rh, Ru		002 / 11010	002 / 11020	002 // 2010	0027(1010
		10	07E-A-N010	07E-A-N020	07E-A-Q010	07E-A-T010
Can also Remove:	Ca, Co, Cu, Fe, Pb, Sc, Sn, Zn					

SiliaMetS Metal Scavengers Portfolio

	Ya.		SiliaMetS Metal Scavengers Technical Information				
	Scavengers	Structure	Brief Description	Metals Removed ¹	Typical Characteristics ^{2, 3}		
PGI-S	SiliaMetS Thiol PN: R51030B Loading: ≥ 1.20 mmol/g Endcapping: Yes	SH	Silia <i>MetS</i> Thiol is our most versatile and robust metal scavenger for a variety of metals under a wide range of conditions.	Ag, Hg, Os, Pd & Ru Cu, Ir, Pb, Rh & Sn	Color: White Density: 0.682 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 2 Years		
PGI-S	SiliaMetS DMT PN: R79030B Loading: ≥ 0.50 mmol/g Endcapping: Yes	SH N N N N N SH N SH	Silia <i>MetS</i> DMT is the silica-bound equivalent of 2,4,6-trimercaptotriazine (<i>trithiocyanuric acid</i> , <i>TMT</i>). It is a versatile metal scavenger for a variety of metals and the preferred metal scavenger for ruthenium catalysts and hindered Pd complexes (<i>i.e.</i> $Pd(dppf)Cl_2$).	Ir, Ni, Os, Pd, Pt, Rh & Ru Cd, Co, Cu, Fe, Sc & Zn	Color: Light brown Density: 0.732 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 2 Years		
	SiliaBond Amine PN: R52030B Loading: ≥ 1.20 mmol/g Endcapping: Yes	S NH2		Cd, Cr, Pd, Pt, Rh & Ru Co, Cu, Fe, Hg, Pb, W & Zn	Color: Off-white Density: 0.700 g/mL Solvent Compatibility: 1 Prolonged Storage: 2 Shelf Life: 2 Years		
PGI-S	SiliaMetS Diamine PN: R49030B Loading: ≥ 1.28 mmol/g Endcapping: Yes		Also known for their electrophile scavenging efficiencies and their base reagent qualities, Silia <i>MetS</i> Amine, Diamine and Triamine have also proven to be very useful for the scavenging of the following metals: Pd, Pt, Cr, W and Zn.	Cr, Pd, Pt, W & Zn Cd, Co, Cu, Fe, Hg, Ni, Pb, Ru, V & Sc	Color: Off-white Density: 0.728 g/mL Solvent Compatibility: 1 Prolonged Storage: 2 Shelf Life: 2 Years		
	SiliaMetS Triamine PN: R48030B Loading: ≥ 1.11 mmol/g Endcapping: Yes			Cr, Pd, Pt, W & Zn Ag, Cd, Co, Cu, Fe, Hg, Ni, Os, Pb, Rh, Ru & Sc	Color: Off-white Density: 0.736 g/mL Solvent Compatibility: 1 Prolonged Storage: 2 Shelf Life: 2 Years		
	SiliaMetS AMPA PN: R85130B Loading: ≥ 0.80 mmol/g Endcapping: Yes	G → N → P ^{OH} OH P O O OH	Silia <i>MetS</i> AMPA is an aminomethyl-alkylphosphonic acid ligand known for its excellent metal-bonding properties. It is particularly efficient to remove AI, Sb, Ni, La, and also very effective for Co, Cu, Fe, Mg and Zn scavenging from reaction intermediates or final APIs.	Al, Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Mg, Nd, Ni, Pm, Pr, Sb, Sm, Tb, Tm, V & Yb Co, Cu, Fe, Mg & Zn	Color: Yellow Density: 0.707 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 1 Year		
	SiliaMetS Cysteine PN: R80530B Loading: ≥ 0.30 mmol/g Endcapping: Yes	S C C C C C C C C C C C C C C C C C C C	Silia <i>MetS</i> Cysteine is the silica-bound equivalent of the amino acid cysteine. It is a versatile scavenger for a variety of metals and the preferred metal scavenger for tin residues. By attaching the molecule to the backbone via the amino group, the thiol group remains free and accessible for higher metal scavenging efficiency.	Cd, Fe, Ir, Os, Ru, Sc & Sn Ca, Cr, Cs, Cu, La, Mg, Pd, Pt, Rh & Zn	Color: Orange Density: 0.665 g/mL Solvent Compatibility: 1 (although we recommend organic solvent when possible) Prolonged Storage: 1 Shelf Life: 1 Year		
pgl-S	SiliaMetS DEAM PN: R54430B Loading: ≥ 0.85 mmol/g Endcapping: Yes	Этон	Silia <i>MetS</i> DEAM is a versatile scavenger designed to remove trace metal of Ti, Zn, Fe and Ag as well as boronic acids from reaction intermediates or final APIs.	Ag, Fe, Sn, Ti & Zn	Color: Off-white Density: 0.691 g/mL Solvent Compatibility: 1 Prolonged Storage: 2 Shelf Life: 2 Years		

	<u> </u>		Silia <i>MetS</i> Metal Scavengers Technical Info	ormation	
	Scavengers	Structure	Brief Description	Metals Removed ¹	Typical Characteristics ^{2,3}
PGI-S	Silia <i>MetS</i> DOTA PN: R91030B Loading: ≥ 0.38 mmol/g Endcapping: Yes		Silia <i>MetS</i> DOTA is a silica-supported tetracarboxylic acid and its various conjugate bases. DOTA molecule is a well-adopted complexing agent. Linked to various metals, so formed-complexes are used as contrast agents in cancer treatments or other medical applications.	Ca, Cu, Gd, La, Ni & Zn Co, Fe, Mg, Pd, Pt & Rh	Color: Light yellow Density: 0.681 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 1 Year
	SiliaMetS Imidazole PN: R79230B Loading: ≥ 0.96 mmol/g Endcapping: Yes	(a) ~~~ N (s) *	Silia <i>MetS</i> Imidazole is a versatile metal scavenger for a variety of metals including Cd, Co, Cu, Fe, Ni, Os, Pd and Rh.	Cd, Co, Cu, Fe, Ir, Li, Mg, Ni, Os, W & Zn Cr, Pd & Rh	Color: Off-white Density: 0.681 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 2 Years
pGI-S	SiliaMetS TAAcOH PN: R69030B Loading: ≥ 0.41 mmol/g Endcapping: No		Silia <i>MetS</i> TAAcOH & TAAcONa are supported versions of EDTA in their acid and sodium salt forms. These two products are effective metal scavengers for Ca, Mg, Li, Ir, Cs, Os, Sn, Pd, Ni	Ca, Co, Ir, Li, Mg, Ni, Os, Ru & Sc Cr, Cs, Fe, Pd, Rh & Sn	Color: Off-white Density: 0.635 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 2 Years
-	Silia <i>MetS</i> TAAcONa PN: R69230B Loading: ≥ 0.41 mmol/g Endcapping: No	Contored Contored	and Cu. Silia <i>MetS</i> TAAcOH is effective for metals in low or zero oxidation states, compared to Silia <i>MetS</i> TAAcONa which is useful for metals in higher oxidation states (≥ 2).	Ca, Cd, Cs, Cu, Fe, Ir, La, Li, Mg, Ni, Os, Rh, Sc & Sn Cr, Pd, Ru & Zn	Color: Off-white Density: 0.712 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 2 Years
	SiliaMetS Thiourea PN: R69530B Loading: ≥ 1.07 mmol/g Endcapping: Yes	an ^y ^y ^y	Silia <i>MetS</i> Thiourea is a versatile metal scavenger for all forms of palladium and is widely used in the pharmaceutical industry. Once complexed with a transition metal, it has been reported to be an effective catalyst.	Pd & Ru Ag, Cu, Fe, Os, Rh, Sc & Sn	Color: Off-white Density: 0.767 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 2 Years
pgl-5	SiliaBond Tosic Acid PN: R60530B Capacity: ≥ 0.54 meq/g Endcapping: Yes	G C C C C C C C C C C C C C C C C C C C	Silia <i>Bond</i> Tosic Acid is in a class of strong acids used in different fields of synthetic organic chemistry. The aromatic ring makes it slightly more acidic than other supported sulfonic acids.	Fe, Rh & Sn Ag, Cu, Ni, Pd, Pt, Ru & Zn	Color: Off-white Density: 0.698 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 2 Years

¹ <u>Scavenging Efficiency:</u>

- Best scavenger for the removal of a particular metal is indicated in Navy Blue
- Good scavenger indicated in Pale Blue

² Solvent Compatibility:

- 1- All solvents, aqueous and organic
- 2- All organic solvents

³ Prolonged Storage:

- 1- Keep dry
- 2- Keep cool (< $8^{\circ}C$) and dry
- 3- Keep cool (< 8°C), dry and under inert atmosphere

Potentially Genotoxic Impurities (*PGI*) Scavenger Contact us for more information

SiliaMetS Metal Scavengers Selection Table

When selecting a metal scavenger, every parameter must be considered: metal catalyst, solvent, residual reagents, by-products, structure of the API (*or molecule of interest*) and temperature.

The following table will help in selecting the most efficient scavenger for a specific metal and application. However, since some parameters may affect the efficiency of the scavenging, we highly recommend performing a preliminary screening experiment using the Silia*MetS* Metal Scavenger Kit.

SiliCycle also offers a confidential Metal Scavenger Screening Service. Contact us to take advantage of our expertise in metal removal.

Best scavenger: Good scavenger: •

Ľ	<u>ک</u>		SiliaMetS I	Metal Scavengers	s Selection Table				
Sca	wenger	Silia <i>MetS</i> Thiol (Si-Thiol)	Silia <i>MetS</i> DMT (<i>Si-DMT</i>)	Silia <mark>Bond</mark> Amine (Si-WAX)	Silia <i>MetS</i> AMPA (<i>Si-AMPA</i>)	Silia <i>MetS</i> Cysteine (<i>Si-CYS</i>)	Silia <i>MetS</i> DEAM (Si-DEAM)	Silia <i>MetS</i> Diamine (<i>Si-DIA</i>)	
PN		R51030B	R79030B	R52030B	R85130B	R80530B	R54430B	R49030B	
Loa	ding (<i>mmol/g</i>)	≥ 1.20	≥ 0.50	≥ 1.20	≥ 0.80	≥ 0.30	≥ 0.85	≥ 1.28	
Тур	ical Tap Density (g/mL)	0.682	0.732	0.700	0.707	0.665	0.691	0.728	
	Ag								
	AI								
	Ar								
	As								
	Ca								
	Cd								
	Ce								
	Со								
	Cr								
	Cs								
	Cu								
	Fe								
	Gd								
ngec	Hg			•					
саvе	lr								
be s	La								
ls to	Li								
Meta	Mg								
	Ni								
	Os								
	Pb								
	Pd								
	Pt								
	Rh								
	Ru								
	Sc								
	Se								
	Sn								
	Ti								
	W								
	Zn								

	SiliaMetS Metal Scavengers Selection Table								
Silia MetS DOTA (Si-DOTA)	Silia <i>MetS</i> Imidazole (Si-IMI)	Silia <i>MetS</i> TAAcOH (Si-TAAcOH)	Silia <i>MetS</i> TAAcONa (Si-TAAcONa)	Silia <i>MetS</i> Thiourea (<i>Si-THU</i>)	Silia <i>MetS</i> Triamine (Si-TRI)	Silia <mark>Bond</mark> Tosic Acid (Si-SCX)	Scavenger		
R91030B	R79230B	R69030B	R69230B	R69530B	R48030B	R60530B	PN		
≥ 0.38	≥ 0.96	≥ 0.41	≥ 0.41	≥ 1.07	≥ 1.11	≥ 0.54 meq/g	Loading (<i>mmol/g</i>)		
0.681	0.681	0.635	0.712	0.767	0.736	0.698	Typical Tap Density (g/m	nL)	
							Ag		
							AI		
							Ar		
							As		
							Ca		
							Cd		
							Ce		
•							Со		
							Cr		
							Cs		
							Cu		
							Fe		
							Gd	-	
							Hg	ngec	
							Ir	cave	
							La	be s	
							Li	ls to	
•							Mg	deta	
							Ni	2	
							Os		
							Pb		
							Pd		
							Pt		
							Rh		
							Ru		
							Sc		
							Se		
							Sn		
							Ti		
							w		
							Zn		

SiliaBond Organic Scavengers Portfolio

SiliaBond Organic Scavengers Technical Information									
Scavengers	Structure	Nature	Molecules Removed	Typical Characteristics ^{1, 2}					
Silia<u>Bond</u> Amine PN: R52030B	Si NH2	Scavenger for Electrophiles (Covalent Bonding)	Acyl Chlorides, Aldehydes, Anhydrides, Chloroformates, Isocyanates, Ketones & Sulfonyl Chlorides	Color: Off-white Density: 0.700 g/mL Solvent Compatibility: 1					
Loading: ≥ 1.20 mmol/g Endcapping: Yes	•	Scavenger for Acids (<i>Ionic Bonding</i>) Catch & Release	Acids & Acidic Phenols	Prolonged Storage: 2 Shelf Life: 2 Years					
SiliaBond Carbamate PN: R50130B Loading: ≥ 1.16 mmol/g Endcapping: Yes	Jow Hy ow	Scavenger for Nucleophiles (Covalent Bonding)	Alcohols, Alkoxides, Amines, Anilines, Hydrazines, Organometallics, Thiols & Thiolates	Color: Off-white Density: 0.741 g/mL Solvent Compatibility: 3 Prolonged Storage: 2 Shelf Life: 2 Years					
SiliaBond Carbonate PN: R66030B Loading: ≥ 0.46 mmol/g Endcapping: Yes	liaBond Carbonate J: R66030B ading: ≥ 0.46 mmol/g idcapping: Yes		Acids, Acidic Phenols & Boronic Acids	Color: Off-white Density: 0.608 g/mL Solvent Compatibility: 3 Prolonged Storage: 1 Shelf Life: 1 Years					
SiliaBond Carboxylic Acid PN: R70030B Loading: ≥ 0.92 mmol/g Endcapping: Yes	Сон	Scavenger for Bases (<i>lonic Bonding</i>) Catch & Release	Primary / Secondary Amines & Anilines	Color: Off-white Density: 0.687 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 2 Years					
SiliaMetS DEAM PN: R54430B Loading: ≥ 0.85 mmol/g Endcapping: Yes	Сотран	Scavenger for Electrophiles & Lewis Acids (Covalent & Ionic Bonding) Catch & Release	Boronic Acids	Color: Off-white Density: 0.691 g/mL Solvent Compatibility: 1 Prolonged Storage: 2 Shelf Life: 2 Years					
Silia<i>MetS</i> Diamine PN: R49030B		Scavenger for Electrophiles (Covalent Bonding)	Acyl Chlorides, Aldehydes, Anhydrides, Chloroformates, Isocyanates, Ketones & Sulfonyl Chlorides	Color: Off-white Density: 0.728 g/mL Solvent Compatibility: 1					
Loading: ≥ 1.28 mmol/g Endcapping: Yes	Ψ	Scavenger for Acids (<i>Ionic Bonding</i>) Catch & Release	Acids & Acidic phenols	Prolonged Storage: 2 Shelf Life: 2 Years					
SiliaBond Diol PN: R35030B Loading: ≥ 0.97 mmol/g Endcapping: No	С с с с с с с с с с с с с с с с с с с с	Scavenger for Electrophiles & Lewis Acids (Covalent & Ionic Bonding) Catch & Release	Boronic Acids	Color: Off-white Density: 0.687 g/mL Solvent Compatibility: 2 Prolonged Storage: 1 Shelf Life: 2 Years					
SiliaBond DMAP PN: R75630B Loading: ≥ 0.53 mmol/g Endcapping: Yes		Scavenger for Electrophiles (<i>Covalent Bonding</i>)	Acyl Chlorides & Sulfonyl Chlorides	Color: Light brown to brown Density: 0.674 g/mL Solvent Compatibility: 1 Prolonged Storage: 3 Shelf Life: 1 Years					
SiliaBond Guanidine PN: R68230B Loading: ≥ 0.80 mmol/g Endcapping: Yes		Scavenger for Acids (<i>Ionic Bonding</i>) Catch & Release	Acids, Acidic Phenols & Boronic Acids	Color: Light yellow Density: 0.732 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 2 Years					
SiliaBond Maleimide PN: R71030B Loading: ≥ 0.64 mmol/g Endcapping: Yes		Scavenger for Nucleophiles (Covalent Bonding)	Thiols & Thiolates	Color: Off-white Density: 0.644 g/mL Solvent Compatibility: 5 Prolonged Storage: 3 Shelf Life: 2 Years					

		SiliaBo	nd Organic Scavengers Tech	nnical Information		
	Scavengers	Structure	Nature	Molecules Removed	Typical Characteristics 1, 2	
PGI-S	SiliaBond Piperazine	G~~~~	Scavenger for Electrophiles (Covalent Bonding)	Acyl Chlorides, Aldehydes, Anhydrides, Chloroformates, Isocyanates, Ketones & Sulfonyl Chlorides	Color: Off-white Density: 0.671 g/mL Solvent Compatibility: 1 Prolonged Storage: 2 Shelf Life: 2 Years	
	Loading: ≥ 0.83 mmol/g Endcapping: Yes	U VIII	Scavenger for Acids (<i>Ionic Bonding</i>) Catch & Release	Acids & Acidic Phenols		
PGI-S	SiliaBond PropyIsulfonic Acid PN: R51230B Loading: ≥ 0.63 mmol/g Endcapping: Yes	G C C C C C C C C C C C C C C C C C C C	Scavenger for Bases (<i>Ionic</i> Bonding)	Amines & Anilines	Color: Off-white Density: 0.728 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 2 Years	
PGI-S	SiliaBond Tosic Acid PN: R60530B Loading: ≥ 0.54 meq/g Endcapping: Yes		Catch & Release		Color: Off-white Density: 0.698 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 2 Years	
_	SiliaBond TMA Acetate PN: R66430B Loading: ≥ 0.71 mmol/g Endcapping: No	Зулиника Псисоо.	Scavenger for Acids (<i>Ionic</i> <i>Bonding</i>) Catch & Release	Carboxylic Acids	Color: Off-white Density: 0.665 g/mL Solvent Compatibility: 1 Prolonged Storage: 1 Shelf Life: 2 Years	
_	SiliaBond Tosyl Chloride PN: R44030B Loading: ≥ 0.63 mmol/g Endcapping: Yes		Scavenger for Nucleophiles (Covalent Bonding)	Alcohols, Alkoxides, Amines, Anilines, Hydrazines, Organometallics, Thiols & Thiolates	Color: Off-white Density: 0.761 g/mL Solvent Compatibility: 4 Prolonged Storage: 3 Shelf Life: 6 months	
pgl-s	SiliaMetS Triamine PN: R48030B Loading: ≥ 1.11 mmol/g Endcapping: Yes	A H H H H H	Scavenger for Electrophiles (Covalent Bonding)	Acyl Chlorides, Aldehydes, Anhydrides, Chloroformates, Isocyanates, Ketones & Sulfonyl Chlorides	Color: Off-white Density: 0.736 g/mL Solvent Compatibility: 1	
			Scavenger for Acids (<i>Ionic</i> <i>Bonding</i>) Catch & Release	Acids & Acidic Phenols	Solvent Compatibility: 1 Prolonged Storage: 2 Shelf Life: 2 Years	

¹ Solvent Compatibility:

1- All solvents, aqueous and organic

- 2- All organic solvents
- 3- Anhydrous aprotic solvents
- 4- Anhydrous aprotic solvents, unstable in DMF
- 5- Polar solvents (DMF, MeOH, H₂O)

² Prolonged Storage:

- 1- Keep dry
- 2- Keep cool (< $8^{\circ}C$) and dry
- 3- Keep cool (< $8^{\circ}C$), dry and under inert atmosphere

Potentially Genotoxic Impurities (*PGI*) Scavenger Contact us for more information

SiliaBond Organic Scavengers Selection Table

Silia*Bond* Organic Scavengers can help you purify your API. Functional group is bound to silica, that will specifically react with a given product. Use the double-entry chart below to choose the best match between the impurity you are dealing with or the scavenger you already have in hand.

Electrophile scavenger (Covalent Bonding): 🔶

Nucleophile scavenger (Covalent Bonding):

Ionic bonding:

Catch & release:

Ya.	SiliaBond Organic Scavengers Selection Table								
Organic Scavenger	Silia <mark>Bond</mark> Amine (Si-WAX)	Silia <mark>Bond</mark> Carbamate (Si-CAR)	Silia <mark>Bond</mark> Carbonate (Si-CO₃)	Silia <mark>Bond</mark> Carboxylic Acid (<i>Si-WCX</i>)	Silia MetS DEAM (Si-DEAM)	Silia <i>MetS</i> Diamine (<i>Si-DIA</i>)	Silia <mark>Bond</mark> Diol nec (Si-Diol)		
Product Number	R52030B	R50130B	R66030B	R70030B	R54430B	R49030B	R35030B		
Loading	≥ 1.20 mmol/g	≥ 1.16 mmol/g	≥ 0.46 mmol/g	≥ 0.92 mmol/g	≥ 0.85 mmol/g	≥ 1.28 mmol/g	≥ 0.97 mmol/g		
Typical Density	0.700 g/mL	0.741 g/mL	0.608 g/mL	0.687 g/mL	0.691 g/mL	0.728 g/mL	0.687 g/mL		
Solvent Compatibility	All aqueous & organic solvents	Anhydrous aprotic solvents	Anhydrous aprotic solvents	All aqueous & organic solvents	All aqueous & organic solvents	All aqueous & organic solvents	All organic solvents		
Functionalities to be scavenge	ed								
Acids & Acidic Phenols	••	•	••			••			
Acyl & Sulfonyl Chlorides	•					•			
Alcohols & Alkoxides		•							
Aldehydes, Anhydrides, Chloroformates, Isocyanates & Ketones	•					•			
Amines & Anilines		•		••					
Boronic Acids			••		••		••		
Carboxylic Acids									
Hydrazines		▼							
Organometallics, Thiols & Thiolates		▼							

	SiliaBond Organic Scavengers Selection Table										
Silia <mark>Bond</mark> DMAP (Si-DMAP)	Silia <mark>Bond</mark> Guanidine (Si-GUA)	Silia <mark>Bond</mark> Maleimide (Si-MAL)	Silia <mark>Bond</mark> Piperazine (Si-PPZ)	Silia <mark>Bond</mark> Propylsulfonic Acid (<i>Si-SCX-2</i>)	Silia <mark>Bond</mark> Tosic Acid (Si-SCX)	Silia Bond TMA Acetate nec (Si-SAX ₂)	Silia <mark>Bond</mark> Tosyl Chloride nec (Si-TsCl)	Silia MetS Triamine (Si-TRI)			
R75630B	R68230B	R71030B	R60030B	R51230B	R60530B	R66430B	R44030B	R48030B			
≥ 0.53 mmol/g	≥ 0.80 mmol/g	≥ 0.64 mmol/g	≥ 0.83 mmol/g	≥ 0.63 meq/g	≥ 0.54 meq/g	≥ 0.71 mmol/g	≥ 0.63 mmol/g	≥ 1.11 mmol/g			
0.674 g/mL	0.732 g/mL	0.644 g/mL	0.671 g/mL	0.728 g/mL	0.698 g/mL	0.665 g/mL	0.761 g/mL	0.736 g/mL			
All aqueous & organic solvents	All aqueous & organic solvents	Polar solvents (DMF, MeOH, H_2O)	All aqueous & organic solvents	All aqueous & organic solvents	All aqueous & organic solvents	All aqueous & organic solvents	Anhydrous aprotic solvents, unstable in DMF	All aqueous & organic solvents			

	••		••					••
•			•					•
							▼	
			•					•
				••	••		▼	
	••							
						••		
							▼	
		▼					▼	

SiliaMetS E-PAK Cartridges

E-PAK is a family of radial flow adsorption cartridges developed specifically for pharmaceutical processing.

Created with proprietary technology, E-PAK cartridges provide rapid adsorption kinetics at flow rates and processing capacities suitable for laboratory, pilot and commercial operations. They are designed for use with both organic and aqueous solvents, and incorporate design features useful for the production of active pharmaceutical ingredients (*API*).

Features & Benefits

- · Proven cartridge design ensures rapid, simple & reliable technology
- · High adsorption capacity and flow rate
- Fixed-bed design ensuring safer handling, clean-up and disposal
- Large adsorbent capacity in small area footprint increases product recovery & reduces solvent requirements

Sorbents for E-PAK Cartridges

E-PAK cartridges are available in a range of sorbents to accommodate the broad range of processing requirements. Other adsorbents are available under request.

	Sorbents for E-PAK		
Active Adsorbents	For Removal and/or Recovery of :	pH Operation	
SiliaMetS Thiol	Pd, Ag, Hg, Os, Ru, Cu, Ir, Pb, Rh, Se & Sn		
SiliaMetS DMT	Pd, As, Ir, Ni, Os, Pt, Rh, Ru, Se, Cd, Co, Cu, Fe, Sc & Zn		
SiliaMetS Imidazole Cd, Co, Cu, Fe, Ir, Li, Mg, Ni, Os, W, Zn, Cr, Pd & Rh		2 to 10	
Silia <mark>Bond</mark> Amine		2 10 10	
SiliaMetS Diamine	Pd, Cr, Pt, W, Zn, Cd, Co, Cu, Fe, Hg, Ni, Pb, Ru, Sc & Se		
SiliaMetS Triamine			
SiliaFlash Bare Silica	Very vast range of organic impurities, metals, pigments	2 to 9	
Activated Carbons	Precious metal catalysts & colors	1 to 13	

Out-to-in radial flow-through fixed porous adsorbent media

Chemical Compatibility

E-PAK cartridges are formed using a proprietary technology and chemically stable materials in common organic solvents. They have been tested and found satisfactory for use with the following commonly used solvents, such as: Methanol, Dichloromethane, Ethyl acetate, Tetrahydrofuran, Toluene & N-ethyl-2-pyrolidone.

Various Ways of Using E-PAK

Depending on the application and how you prefer to work, E-PAK cartridges can be used in different ways as shown below.

For a single pass usage, we suggest to run at very low flow rate compared to recirculation process, which can be run at higher flow rate.

Recirculation

Passes

Case Study

Get your copy of our new Case Study!

« Two-Steps Purification with E-PAK[®] Cartridges Following a Direct Pd-Catalyzed Borylation »

Contact us: <u>scavengers@silicycle.com</u>

Pd Scavening: Bulk vs E-PAK

A typical Suzuki-Miyaura reaction was performed (right).

Silia*MetS* in a 5 x 1 cm E-PAK and bulk (\approx 8 molar equiv.), solution recirculated at 50 mL/min for E-PAK, contact time of 6 h for both.

No backpressure was observed for E-PAK with a slightly faster scavenging efficiency versus bulk.

Portfolio

Lab Scale

Lab scale cartridges are designed to facilitate the evaluations of small samples. Testing with loose media can be done with samples as small as a few milliliters and are normally done in advance of cartridge testing to identify the formula with the highest capacity to remove contaminants with the highest recovery.

Lab Scale Cartridges								
Cartridge Size		Pressure Drop AD (Dsig)	Media Weight					
Diameter x Height	Flow Rate Range	with w/1 cps Fluid	SiliaMetS & SiliaBond	Silia <i>Flash</i> & Activated Carbons				
5 x 1 cm	1 - 20 mL/min	≤ 5 psig	8 g	5 g				
5 x 10 cm	10 - 200 mL/min	≤ 5 psig	75 g	50 g				
5 x 25 cm	25 - 500 mL/min	≤ 5 psig	200 g	125 g				

Note: Faster flow rate can be used for the lab scale cartridges depending on the application or the scavenging difficulty (1 cm up to 100 mL/min, 10 cm up to 500 mL/min and 25 cm up to 1 L/min).

Pilot & Commercial Scale

E-PAK pilot scale cartridges provide rapid processing for volumes from 10 to hundreds of liters, and can establish the parameters upon moving to larger scales, since E-PAK achieve true linear scalability.

E-PAK commercial scale cartridges provide rapid processing for manufacturing operations needing to process batch sizes of > 10,000 liters or can be adapted for continuous operation using a duplex design.

Pilot & Commercial Scale Cartridges							
Cartridge Size	Eleve Data Danas	Pressure Drop ΔP (Psig)	Media Weight				
Diameter x Height	Flow Rate Range	with w/1 cps Fluid	Silia <i>MetS</i> & Silia <mark>Bond</mark>	Silia <i>Flash</i> & Activated Carbons			
Pilot Scale							
16.5 x 12.5 cm	0.10 - 2.5 L/min	≤ 10 psig	875 g	850 g			
16.5 x 25 cm	0.25 - 5 L/min	≤ 10 psig	1.75 kg	1.7 kg			
Commercial Scale							
16.5 x 50 cm	0.50 - 10 L/min	≤ 10 psig	3.5 kg	3.4 kg			
16.5 x 100 cm	1 - 20 L/min	≤ 10 psig	7 kg	6.8 kg			

All cartridges are provided with a Code 8 (closed top & open bottom endcaps-bottom with double 2-222 Teflon® encapsulated Viton® o-ring) cartridge sealing configuration. To meet commercial processing requirements, E-PAK cartridges can be operated in parallel for increased capacity.

Scale-Up Linearity Demonstration

Using the same typical Suzuki-Miyaura reaction shown at page 19, with ~ 12 molar equiv., scale-up reactions were performed from lab to commercial scale. As you can see below, each format behaved similarly in terms of efficiency and kinetics.

Scale-Up Calculation

Scale-up projections based on a linear extrapolation of adsorbent mass have proven to be quite accurate when test conditions including contact time, temperature, solvent type and contaminant and compound levels are held constant. The following table shows the scale-up/relative change in mass between lab, pilot and commercial size E-PAK cartridges.

Scale-Up calculation for Silica-Based Adsorbents								
Cartridge Sizes	5 x 1 cm	5 x 10 cm	5 x 25 cm	16.5 x 12.5 cm	16.5 x 25 cm	16.5 x 50 cm	16.5 x 100 cm	
Scale-up Factor	-	10	25	80	220	440	875	
Mass of Silica (g)	8	75	200	875	1,750	3,500	7,000	
# mmol SiliaMetS Thiol (1.20 mmol/g)	9.6	90	240	1,050	2,100	4,200	8,400	
# mmol SiliaMetS DMT (0.50 mmol/g)	4.0	38	100	438	875	1,750	3,500	
# mmol SiliaMetS Imidazole (0.96 mmol/g)	7.7	72	192	840	1,680	3,360	6,720	
# mmol SiliaBond Amine (1.20 mmol/g)	9.6	90	240	1,050	2,100	4,200	8,400	
# mmol SiliaMetS Diamine (1.28 mmol/g)	10.2	96	256	1,120	2,240	4,480	8,960	
# mmol SiliaMetS Triamine (1.11 mmol/g)	8.9	83	222	971	1,942	3,885	7,770	
Bed volume (<i>cm</i> ³)	18.8	188	470	2,375	4,750	9,500	19,000	
Recommended Flow Rate (mL/min)	7.5	75	190	950	1,900	3,800	7,600	
Typical Flow Rate Range (<i>mL/min</i>)	1 - 20	10 - 200	25 - 500	100 - 2,500	250 - 5,000	500 - 10,000	1,000 - 20,000	
Approximated Tank Volume	50 mL	200 mL	450 mL	2.5 L	5 L	11.6 L	23.3 L	
Conditionning	150 mL	600 mL	1.35 L	7.5 L	15 L	35 L	70 L	

Measurement Methodology:

- Scale-up Factor: mass of silica / 8 g (smallest size)
- Mass of Silica (g): upon packing of cartridge
- # mmol SiliaMetS / SiliaBond XXX (X.X mmol/g): silica mass x typical loading of SiliaMetS / SiliaBond
- Bed volume (cm³): cake total volume, excluding cap
- Recommended Flow Rate (mL/min): for residence times of 2.5 minutes
- Recommended Flow Rate Range (*mL/min*): for residence times from 1 to 20 minutes. Faster flow rate can be used for some applications.

20

Conditionning: 3 x Tank volume including cartridge

Cartridge Housings

Lab Scale

- Various housing length available (for 1 cm, 10 cm & 25 cm cartridges)
- Operated with standard pump
- Typical Pressure rating: 150 psi
- Easy housing conversion for all lengths by simply changing the bowl

Pilot & Commercial Scale

- A series of cartridge housings for operation of 1 to 12 cartridges
- Made in stainless steel or Hastelloy
- Pressure rating: 150 psi
- Can be operated in parallel to process batch sizes of \geq 10,000 L

Experimental Optimization for Scavengers

If the scavenging is incomplete or if you wish to optimize the reaction, you can try the steps below. Various parameters can be changed one at a time or simultaneously to improve removal efficiency.

Note: you can mix multiple scavengers to get superior efficiency for example when multiple species are suspected.

Number of SiliaMetS or SiliaBond Equivalents

For initial screening experiments we suggest using 4 - 8 molar equivalents of scavengers relative to the concentration of the residual impurities. Once the preferred scavenger is identified, further optimization can be done to reduce the number of equivalents used.

Subsequent Treatments

In some cases (*equilibrium process or the presence of multiple species*), multiple treatments with our scavengers are desirable over a single treatment with a larger amount.

For optimal results, filtration between each treatment can enable higher scavenging efficiency.

• Temperature

In initial screening, we suggest the scavenging experiments to be run at room temperature. Usually, scavenging is completed after one to four hours.

However, when shorter scavenging times are required, higher scavenging rates can be achieved by increasing the temperature. Silia*MetS* and Silia*Bond* can be safely used at elevated temperature without degradation and can be added either at room temperature or directly to a warm solution.

Solvent

Silia*MetS* and Silia*Bond* can safely be used in a wide range of organic and aqueous solvents commonly used in laboratory and in process, such as DMF, DMSO, THF, 2-butanone, alcohols, ethers, chlorinated solvent, etc.

As demonstrated in the figure, the nature of the solvent does sometimes influence scavenging efficiency. If scavenging or kinetics are too slow, changing solvent or adding a co-solvent should be considered.

• Mixing Rate

Our scavengers are mechanically stable and offer excellent scavenging efficiency in batch processes agitated by overhead stirrers as well as orbital shaking under low to moderate agitation rates.

If required, mixing rates can be increased to get better scavenging results. With faster stirring, scavenger dispersion in solution is improved.

• pH of the Aqueous Solution

When the scavenging is done in aqueous solutions, it is possible to use our scavengers in a pH range of 2 to 12. Depending on the nature of the scavenging agent, pH can modify the functional groups present on the scavengers by charging them, scavenging might be affected (*e.g.: amine groups in acidic conditions*).

• Reaction Time

In some cases, where increasing the temperature is impossible, longer contact time with the scavenger can allow higher scavenging efficiency.

Conditions: Pd(OAc)₂, THF, Silia*MetS* Thiol, r.t. Initial concentration: 1,000 ppm

Typical Experimental Procedures

In Batch Mode Reactor (Bulk)

Č.	For Silia <i>MetS</i> Metal Scavengers	For SiliaBond Organic Scavengers
STEP	For initial screening, start with 4 - 8 molar equivalents of Silia <i>MetS</i> in respect to the residual metal concentration.	For initial test, start with 4 - 8 molar equivalents of Silia <i>Bond</i> in respect to the impurity.
1	Dissolve the crude product to be treated in a suitable solvent (<i>or directly us</i> solution volume. Directly add your chosen Silia <i>MetS</i> / Silia <i>Bond</i> to these vials. Note : no pre-wetting / pre-activation is required. For initial tests, stir the solution for at least one hour at room temperature.	e the crude reaction mixture) and prepare vials containing the same
3	Scavenging progress can be followed by normal analytical techniques. The scavenging progress can also be estimated by looking at the color of the solution, as depicted herein:	Scavenging progress can be followed by normal analytical techniques. If scavenging seems incomplete or very slow, reaction time or temperature can be increased, or more equivalents of the scavenger can be added.
4	At the end of the scavenging, filter off the scavenger using a fritted funnel of	or filtration device.
5	Wash the Silia <i>MetS</i> with additional solvent for total recovery of the API (<i>or compound of interest</i>) and concentrate the solution under vacuum.	Wash thoroughly with solvent to afford impurity-free solution. Concentrate under vaccum.
6	Analyze the residual metal or organic impurity concentration of each vial to	identify the most efficient scavenger.
7	Direct scale-up is now possible. Otherwise, scavenging optimization can be	e examined.

Please keep in mind that the above procedures are standard and introductory, but optimization of conditions is key to optimal scavenging efficiency.

In SPE or Flash cartridges

Fixed-bed formats are a great alternative for metal or organic removal and are directly scalable. We suggest initial screening investigations to be done using SiliaPrep 2 g / 6 mL SPE cartridges.

\mathcal{L}	Typical Experimental Procecures
STEP	Description
1	Condition the cartridge with 3 - 4 column volumes using the same solvent as the solution to be treated.
2	Add the solution containing the API and the metal or organic impurity to the top of the cartridge and let it pass through the cartridge under gravity.
	Note : if needed, a slight positive pressure on the top of the cartridge or a light vacuum at the bottom can be applied to speed up the flow rate.
	For most SiliaMetS metal scavengers, a dark colored band will be observed on the top of the silica bed (right).
3	Note: if the residual solution is still colored, multiple passes through the same cartridge can be done.
4	Once the scavenging is completed, wash the cartridge using at least three column volumes of solvent to ensure total API recovery.

Contact us for E-PAK® Typical Experimental Procedures Guide.

Determining the Optimal Amount of Scavenger to be Used

From Residual Metal Concentration

Example: knowing that the Palladium (Pd) concentration in 800 g of material is 500 ppm (the oxidation state does not affect the calculation)

Data needed

- Loading of the scavenger: e.g.: SiliaMetS Thiol = 1.2 mmol/g
- Metal molecular weight: e.g.: Pd = 106.42 g/mol
- Amount of product to be treated: e.g.: 800 g
- Residual concentration of metal: e.g.: 500 ppm of Pd

1. Determine the amount of palladium to be scavenged

Amount of Pd in ma - Residual metal concentration x Qty of product to be treated
1,000
Amount of Pd in mg = $\frac{500 \text{ ppm x 800 g of product}}{1,000}$ = 400 mg of Pd in 800 g of product
Conversion in mmol of Pd = Amount of Pd in mg Metal molecular weight
Conversion in mmol of Pd = $\frac{400 \text{ mg}}{106.42 \text{ g/mol}}$ = 3.76 mmol of Pd
2. Calculate the amount of scavenger to use (1 equivalent)
Amount of Silia <i>Met</i> S to use =

Amount of Silia*MetS* to use = $\frac{3.76 \text{ mmol of Pd}}{1.2 \text{ mmol/g}} = 3.13 \text{ g of Silia$ *MetS*Thiol for 1 equiv

From Amount of Metal Catalyst Used

Data needed

- Amount of metal catalyst used: e.g.: 10 g of Pd(PPh₃)₄
- Metal catalyst molecular weight: Pd(PPh₃)₄ = 1,155.56 g/mol

Determine the amount of Palladium to be scavenged

Amount of Pd in mmol =	Quantity of catalyst used for the reaction x 1,000 Metal catalyst molecular weight			
Amount of Pd in mmol =	10 g of Pd(PPh ₃) ₄ x 1,000 1,155.56 g/mol	= 8.65 mmol of Pd (<i>max to be scavenged</i>)		

From Residual Organic Residue Concentration

Data needed

- Loading of organic scavenger: e.g.: SiliaBond Guanidine = 0.74 mmol/g
- Estimated amount of impurity to be removed (in mmol): e.g.: 5 mmol

Calculate the amount of scavenger to use (1 equivalent)

Amount of Cilic Dand Cueniding to use -	Number of mmol of impurity	equiva
Amount of SillaBond Guandine to use =	SiliaBond Guanidine loading	In this o
Amount of Cilia Dond Cupriding to use -	5 mmol	Guanid (2 x 6.7
Amount of SiliaBond Guanidine to use =	0.74 mmol/g	,

If you have any doubt, please go to our online calculator to have all the work automatically done for you ! www.silicycle.com/web-tools

To scavenge 400 mg of palladium, 3.13 g of Silia*MetS* Thiol are needed if using only one equivalent.

However, it is highly recommended that a minimum of four equivalents be used at first. In this case, the amount of Silia*MetS* Thiol will be four times higher ($4 \times 3.13 \text{ g} = 12.52 \text{ g}$).

Sometimes, the metal residual concentration is unknown. In such case, the amount (g) of palladium to be scavenged can be replaced by the amount of metal catalyst used for the reaction.

The amount of Silia*MetS* Thiol to be used can then be determined as stated above (see *point 2. above*).

In this particular case, one equivalent of Silia*MetS* Thiol corresponds to 7.20 g.

To scavenge 5 mmol of impurity, 6.76 g of Silia*Bond* Guanidine are needed if using only one equivalent.

However, keep in mind that it is highly recommended that a minimum of two equivalents be used at first.

In this case, the amount (g) of SiliaBond Guanidine will be two times higher $(2 \times 6.76 g = 13.52 g)$.

SiliaMetS Thiol & DMT Stability & Leaching Studies

Since our Metal and Organic Scavengers are being used by many pharmaceutical companies, each Silia*MetS* and Silia*Bond* manufactured by SiliCycle is submitted to an extensive washing procedure to ensure the product exhibits extremely low levels of extractables and leachables.

SiliCycle has implemented a quality control procedure that includes loading and reactivity determination, as well as leachables and extractables analysis. The solution must be free of contaminants for the product to successfully pass the quality control tests.

Chemical Resistance In Acidic Medium

Silia*MetS* Thiol or DMT (0.4 g) was added to several acidic solutions for chemical resistance testing (4 mL). Methanol (0.4 mL) was added to each vial in order to ensure the silica was well impregnated with the aqueous medium. The solution was stirred mechanically for 1 to 16 hours at 22°C, and 1 hour at 60°C. Si-Thiol or Si-DMT was then filtered and rinsed thoroughly with water and methanol, dried and subjected to CNS analysis.

	Chemical Resistance of SiliaMetS Thiol in Acidic Media							
Experimental Conditions	1 M, 1h 22°C	5 M, 1h 22°C	5 M, 16h 22°C	5 M, 1h 60°C	5 M, 16h 60°C			
H ₃ PO ₄ (phosphoric acid)								
H ₂ SO ₄ (sulfuric acid)								
HCI (hydrochloric acid)				1				
HNO ₃ (nitric acid)								
AcOH (acetic acid)								
TFA (trifluoroacetic acid)								
HCO ₂ H (formic acid)	N/A	N/A						

¹: reaction was stirred at 40°C.

Chemical Resistance of SiliaMetS DMT in Acidic Media							
Experimental Conditions	1 M, 1h 22°C	5 M, 1h 22°C	5 M, 16h 22°C	5 M, 1h 60°C	5 M, 16h 60°C		
H ₃ PO ₄ (phosphoric acid)							
H ₂ SO ₄ (sulfuric acid)							
HCI (hydrochloric acid)				1			
HNO ₃ (nitric acid)							
AcOH (acetic acid)							
TFA (trifluoroacetic acid)							
HCO ₂ H (formic acid)	N/A	N/A					
¹ : reaction was stirred at 40°C.							
No Significant Change (0 - 0.7 % difference) Fair Loss (1.0 - 1.5 % difference) Silica was dissolved							

Light Loss (0.8 - 1.0 % difference)

0 % difference)

Substantial Loss (> 1.5 % difference)

26

No change in color was observed in the supernatant after filtration and washing steps. Silia*MetS* Thiol & DMT are resistant to most acidic conditions.

Chemical Resistance In Basic Medium

Silia*MetS* Thiol or DMT (0.4 g) was added to several basic media in water, methanol or dichloromethane (4 mL). In the case where water was the solvent, methanol (0.4 mL) was added to each vial in order to ensure the silica was well impregnated with the aqueous medium. The solution was stirred mechanically for 1 to 16 hours at 22°C. Si-Thiol or Si-DMT was then filtered and rinsed thoroughly with water and methanol, dried and subjected to CNS analysis.

Chemical Resistance of Silia <i>MetS</i> Thiol in Basic Media							
Experimental Conditions	1 M, 1h, 22°C	5 M, 1h, 22°C	5 M, 16h, 22°C	5 M, 1h, 22°C			
	in protic solvent (water)		in protic solvent (methanol)	in aprotic solvent (dichloromethane)			
NaOH (sodium hydroxide)							
NH ₄ OH (ammonium hydroxide)			N/A				
Na ₂ CO ₃ (sodium carbonate)							
NaHCO ₃ (sodium bicarbonate)							
TEA (triethylamine)							
DEA (diethanolamine)							
Pyridine							
NH ₃ (ammonia)	N/A						

	Chemical Resistance of SiliaMetS DMT in Basic Media							
	1 M, 1h, 22°C	5 M, 1h, 22°C	5 M, 16h, 22°C	5 M, 1h, 22°C				
Experimental Conditions	in protic sol	vent (<i>water</i>)	in protic solvent (methanol)	in aprotic solvent (dichloromethane)				
NaOH (sodium hydroxide)								
NH ₄ OH (ammonium hydroxide)			N/A					
Na ₂ CO ₃ (sodium carbonate)								
NaHCO ₃ (sodium bicarbonate)								
TEA (triethylamine)								
DEA (diethanolamine)								
Pyridine								
NH ₃ (ammonia)	N/A							
No Significant Change (0 - 0.7	No Significant Change (0 - 0.7 % difference) Fair Loss (1.0 - 1.5 % difference) Silica was dissolved							

Light Loss (0.8 - 1.0 % difference)

Substantial Loss (> 1.5 % difference)

No change in color was observed in the supernatant after filtration and washing steps. Silia*MetS* Thiol & DMT are resistant to most basic conditions.

Thermal Stability

Thermogravimetric analysis, or TGA, is our method to determine any mass loss on Si-Thiol due to decomposition, oxidation, or loss of volatiles (*such as moisture*).

Based on TGA Analysis, Silia*MetS* Thiol is considered to be stable up to 220°C, but we suggest not to go over 150°C.

Zoom on important mass loss (TGA from 0 to 400°C)

SiliaMetS Thiol Batch History - Lot-to-lot Reproducibility

The manufacture of functionalized silica gels is both a complex and controlled process. SiliCycle maintains extensive records of each batch manufactured, and retains these for a minimum of 7 years. Such records contain the production history of finished and released products. They provide objective evidence that the functionalized gels were manufactured in accordance to our quality standards and minimal requirements, and act as a record of traceability information for all units or lots.

SiliCycle's loadings of functionalized gels are always extremely constant from batch-to-batch. As an example, here is an overview of lot-to-lot reproducibility over seventy consecutive lots of Silia*MetS* Thiol of same batch size manufactured.

Mechanical Stability

The mechanical resistance of silica gel is roughly 10,000 psi. This value depends on pore diameter and particle size. In the following experiment, a comparison of mechanical resistance between silica gel and polymer was conducted:

SEM of SiliaMetS Thiol

After 4 hours under mechanical stirring

Solvent: DMF Temperature: 22°C

Stirring speed: 500 RPM (overhead)

After 16 hours under mechanical stirring

SEM of Polymer Support

After 4 hours under mechanical stirring

After 16 hours under mechanical stirring

After 16 hours, there was hardly no difference in the silica particles on which our scavengers are functionalized. In comparison, the polymer support was completely destroyed.

SEM & Malvern Analysis are a safe and clear demonstration that almost no mechanical grinding nor crushing of the silica occurs after stirring, which is not the case for polymeric support, for which drastic grinding appears.

Mechanical Stirrer in Reactor

This picture was taken in one of SiliCycle's medium-sized reactors.

Silia*MetS* Thiol has been produced for more than 20 years in SiliCycle's reactors without any damage.

Leaching and Extractable Studies

To address the concerns for potential leaching of impurities into reaction mixtures using Silia*MetS* Thiol & DMT, four typical metalcontaining reactions were performed. Detection, identification and quantification of possible impurities resulting from the scavenging action was then performed.

Experimental Procedure

Crude reaction mixtures (8 *mL*) were placed in a standard polypropylene tube equipped with a 20 µm frit, loaded with 1 g of the appropriate Silia*MetS* Metal Scavenger, and mixed for 4 h at either room temperature or 80°C. Solutions were then filtered through a 0.2 µm filter prior to analysis.

Leaching Analysis

Silane leaching was analyzed by Inductively-Coupled Plasma-Optical Emission Spectroscopy (*ICP-OES*) which has proven to be very sensitive for silicon quantification (*detection limit in solution is 0.125 ppm*).

Traces of non-silicon containing impurities were also analyzed by Gas Chromatography-Mass Spectrometry (*GC-MS*), Liquid chromatography-tandem mass spectrometry (*LC-MS*) and ¹H NMR Analysis.

Gel Purity Calculation

Here is an example of how gel purity can be calculated:

Impurity % = $\frac{2 \text{ mg of silicon x 100}}{1,000,000 \text{ mg of Silia}MetS} => 0.0002 \%$ impurity

Gel purity = 100 - (Impurity %) => 99.9998 % purity

Silane Leaching Analysis by ICP-OES

Results shown in the table below for SiliaMetS Thiol & DMT confirm that minimal leaching occurs with our scavengers.

Stability of Silia <i>MetS</i> in Suzuki, Stille, Heck and Grubbs Ring-Closing Metathesis Reactions								
Departies (achieve)	Townseture	Silia <i>Me</i>	tS Thiol	SiliaMetS DMT				
Reaction (Solvent)	Temperature	[Silicon]	Gel Purity (%)	[Silicon]	Gel Purity (%)			
Suzuki (<i>Toluene</i>)	22°C	2 ppm	99.9998	1 ppm	99.9999			
	80°C	2 ppm	99.9998	2 ppm	99.9998			
Stille (1,4-Dioxane)	22°C	2 ppm	99.9998	1 ppm	99.9999			
	80°C	1 ppm	99.9999	3 ppm	99.9997			
Heck (DMF)	22°C	2 ppm	99.9998	1 ppm	99.9999			
	80°C	1 ppm	99.9999	2 ppm	99.9998			
Grubbs Ring-Closing Met. (DCM)	22°C	2 ppm	99.9998	2 ppm	99.9998			

Non-Silicon Leaching Analysis

Each experiment was run on a 1 g aliquote of Silia*MetS* and was shaken for 1 hour at room temperature. Leaching examination was performed through both GC-MS and 1H NMR analysis, comparing leaching profiles of bare silica, Silia*MetS* Thiol and Silia*MetS* DMT.

Compared to the silica blank spectrum, neither experiment showed evidence of any impurities for either SiliaMetS Thiol or DMT.

Note: in GC-MS spectrum, peak at 8.5 minutes is the internal standard (*1-fluoronaphthalene, 100 ppm*). In NMR spectrum, peaks at 2.4 and 3.4 ppm are, respectively, d6-DMSO and water contained in deuterated solvent.

Stability Study (Shelf Life)

SiliCycle certifies that Silia*MetS* Metal Scavengers stored under recommended conditions in an undamaged container are guaranteed to perform for two years from the manufacturing date without significant loss of performance.

Silia <i>MetS</i> Thiol Efficiency within Shelflife of 2 years					
Lot #	QC Date	Scavenging (%)			
	Year 0	> 99.9			
11577	Year 1	99.5			
	Year 2	99.6			
12218	Year 0	99.9			
	Year 1	99.5			
	Year 2	99.1			
64215	Year 0	99.2			
	Year 1	99.3			
	Year 2	99.5			

Scavenging: 1,000 ppm of Pd(OAc)₂ in DMF. Conditions: 2 equiv of Silia*MetS* Thiol, 1 h, 22°C.

Application Notes & Case Studies

SiliaMetS Metal Scavengers

Antimony (Sb)	
In situ speciation of dissolved inorganic antimony in surface waters & sediment porewaters	34
Cesium (Cs)	
Amphoteric borylketenimines: versatile intermediates in the synthesis of borylated heterocycles	34
Copper (<i>Cu</i>)	
Silia <i>MetS</i> Imidazole in the synthesis of polymer films for measurement of optical properties	35
Synthesis of a multivalent glycoligand against avian and human influenza viruses	35
Iridium (<i>Ir</i>)	
Hydrogen-borrowing and interrupted-hydrogen-borrowing reactions of ketones and methanol catalyzed by iridium	36
Manganese (Mn)	
Diactorescalactive synthesis of sis N Pac 4 aminosysteheyanel with reductive ring opening method using continuous flow	26
	30
Osmium (Os)	
Osmium scavenging with Silia <i>MetS</i>	37
Palladium (<i>Pd</i>)	
Circumventing an unexpected catalyst poisoning in a Suzuki coupling	38
Development and scale-up to improve an API's physiochemical and bulk powder properties	38
Discovery of small molecule splicing modulators of survival motor neuron-2 (SMN2) for the treatment of Spinal Muscular Atrophy (SMA)	. 39
Identification of a potent, highly selective, and brain penetrant phosphodiesterase 2A inhibitor clinical candidate	39
Development of a scalable synthesis of an IDO inhibitor featuring a stereospecific Suzuki coupling of a cyclopropane carboxylic acid	. 40
Scalable Zn-catalyzed regioselective allylation of 1 methyl I α -rhamnopyranoside	41
Palladium-mediated synthesis of a near-infrared fluorescent K+ sensor	41
N-annulated perylene diimide dimers: controlling structural conformation & impact on physical, electronic, optical & photovoltaic properties	42
Suzuki-Miyaura cross-coupling synthesis of O ⁶ -benzyl glaziovianin A	43
Suzuki-Miyaura cross-coupling synthesis of GDC-0084, a glioblastoma multiforme cancer inhibitor	43
Discovery and synthesis of a direct activator of AMP-kinase PF-06409577 against diabetic nephropathy	44
Synthesis of Mavatrep: a potent antagonist of transient receptor potential Vanilloid-1	44
Development of an efficient, safe, and environmentally friendly process for the manufacture of GDC-0084	45
Multi-kilo delivery of AMG 925 featuring a Buchwald-Hartwig amination and processing with insoluble synthetic intermediates	46
Synthesis of EDOT-containing polythiophenes and their properties in relation to the composition ratio of EDOT	47
A Tetraphase case study: palladium scavenging in the development of the first fully synthetic fluorocycline using SiliaMetS DMT	48
An AstraZeneca case study: palladium removal using Silia <i>MetS</i> Thiol	49
A Pfizer case study: palladium removal using Silia <i>MetS</i> Thiol after a Buchwald-Hartwig amination	49
An Amgen case study: palladium removal using various resins	50
Pd scavenging after a Suzuki-Miyaura coupling using a GlaxoSmithKline published reaction	52
The effect of variation of phosphorous ligand nature on scavenging	53

Platinum (Pt)

Polyhodral	oligomeric s	ileoenuiovanoe	(POSSe)	are promising	huilding	blocks for	organic_in	organic	hybrid material	le	5/
Folyneulai	uligomenic s	iisesquioxaries	(FU333)	are promising	building	DIOCKS 101	organic-in	lorganic	nyunu matena	15	54

Ruthenium (Ru)

Electrostatic self-assembly and covalent fixation (ESA-CF) process for the synthesis of linear and cyclic polymers and their topology effects on thin-film electron mobility	55
Photoinduced topological transformation of cyclized polylactides for switching the properties of homocrystals and stereocomplexes	56
Regioselective ring-opening metathesis polymerization of 3-substituted cyclooctenes	56
An Idenix case study: ruthenium removal in the macrocyclization of dienylureas via RCM, using SiliaMetS DMT	57
Ruthenium scavenging	58
Silia <i>MetS</i> vs other purification methods for ruthenium scavenging	58

Tin (Sn)

Tin acetate-promoted Buchwald-Hartwig couplings of heteroaromatic amines	59
Tin scavenging using SiliaBond Carbonate vs SiliaMetS Cysteine	59
Tin scavenging using SiliaMetS Cysteine & TAAcONa	60

Uranium (*U*)

Uranium XAFS analysis of kidney from rats exposed to uranium
--

Multiple Metals

A Genentech case study: palladium and ruthenium removal in the synthesis of AKT inhibitor Ipatasertib	
using SiliaMetS Thiol (multi-kilogram scale)	61
An Abbott Laboratories case study: palladium and iron removal using SiliaMetS Thiol	62
A Johnson & Johnson case study: Sonogashira reaction & metal scavenging of various metals	62
A Pfizer Global R&D case study: palladium and copper removal on a large scale batch using SiliaMetS Thiol	63
Multiple metal scavenging	63
Scavenging of Pd(dtbpf) in Suzuki coupling for the synthesis of a DGAT-1 inhibitor	64
Scavenging of Pd-118 using Silia <i>MetS</i> metal scavengers	65
Scavenging of Pd(dtbpf)Cl ₂ in Suzuki coupling for the preparation of arylpyrrolidines	66
Silia <i>MetS</i> in aqueous conditions	67

SiliaBond Organic Scavengers

SiliaBond trapping agent in the evaluation of tea tree essential oils as skin sensitizers	68
Proteome-wide profiling of clinical PARP inhibitors to reveal compound-specific secondary targets	68
Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites amines	69
A Broad Institute case study: ionic scavenging of acids with Silia <i>Bond</i> Carbonate & scavenging of amines with Silia <i>Bond</i> Carboxylic Acid	69
An Abbott case study: ionic scavenging of boronic acids with SiliaBond Carbonate	70
A Roche case study: nucleophilic scavenging of acyl chlorides with SiliaBond Amine	70
Ionic scavenging of phenols and acids with SiliaBond Carbonate	71
Nucleophilic scavenging of boronic acids with SiliaBond Diol, SiliaBond Carbonate and SiliaMetS DEAM	72
Ionic scavenging of 2-iodobenzoic acid with SiliaBond TMA Acetate and SiliaBond Carbonate	73
Carboxylic acids purification with SiliaBond TMA Acetate	74

Application Notes & Case Studies Silia*MetS* Metal Scavengers

Removal of Sb

In situ speciation of dissolved inorganic antimony in surface waters & sediment porewaters

Antimony is a priority environmental contaminant, yet very little research on the behavior and fate of Sb in the environment has been reported. The primary source is mining and processing of Sb for industrial applications. To properly understand the processes controlling the movement of Sb through the environment, there is a need for tools to accurately measure the speciation of Sb, not just total concentration.

Both toxicity & mobility of Sb are affected by oxidation state, thus the accurate measurement of Sb speciation is essential for investigating the behavior of this contaminant in aquatic systems.

The authors present herein a diffusive gradients in thin films (*DGT*) technique, which utilizes a binding layer containing Silia*MetS* Thiol, for the selective measurement of Sb^{III} in surface waters and sediment porewaters.

The mercapto-silica showed a high affinity for Sb^{III}, with uptake efficiencies > 97 % and elution efficiencies of 86.9 +/- 2.6 %

The Silia*MetS* Thiol based DGT technique was also applied to measure porewater concentrations of Sb^{III} and As^{III} in a contaminated freshwater sediment at high resolution.

Initial and/or residual metal content was not disclosed.

Bennet, W. W. et al. Environ. Sci.: Processes Impacts, 2016, 18, 992-998 Griffith University, South East Queensland, Australia

Removal of Cs

Amphoteric borylketenimines: versatile intermediates in the synthesis of borylated heterocycles

Reported herein was the 1st synthesis of amphoteric borylketenimines from ethynyl N-methyliminodiacetic acid (*MIDA*) boronate and sulfonyl azides via copper catalysis.

This work highlights the unexplored utility of borylketenimines in the synthesis of potentially bioactive molecules.

In situ Silia*MetS* Thiol (*4 equiv*) successfully removed the remaining Cs in deprotection reaction, which resulted in complete conversion and high selectivity.

Initial and/or residual metal content was not disclosed.

Yudin, A. K. et al. Chem. Eur. J., **2017**, 23, 9711-9715 University of Toronto, Ontario, Canada

Silia*MetS* Imidazole in the synthesis of polymer films for measurement of optical properties

An asymmetric bifunctional monomer having both an unprotected alkynyl group and a vinyl ether (*VE*) polymerization of VEEP smoothly proceeded in a controlled manner under a living cationic polymerization condition to give alkyne-substituted polyVE (*poly-VEEP*) without any protection of the pendant alkynyl function.

In the click reaction of precursor macromonomer MA-PVEEP, the resultant polymer MA-P(*VE-Mal*) was purified from contaminating copper with Silia*MetS* Imidazole (0.192 mmol, 1.13 equiv).

Removal of Cu

Synthesis of a multivalent glycoligand against avian and human influenza viruses

A glycopolymer bearing α 2,3-linked sialyltrisaccharides was synthesized by living radical polymerization using a glycomonomer prepared by a protecting-group-free process, direct azidation of the free sialyllactose, and subsequent azide-alkyne cycloaddition.

The prepared glycopolymer with pendant 3'-sialyllactose moieties strongly interacted with both avian & human influenza viruses.

SiliaMetS Imidazole (5 equiv for Cu) was successful in removing contaminating Cu, with only 5 equiv, O.N. at r.t.

Removal of Ir

Hydrogen-borrowing and interrupted-hydrogen-borrowing reactions of ketones and methanol catalyzed by iridium

The use of catalytic $[{Ir(cod)Cl}_2]$ was shown to facilitate hydrogen-borrowing reactions of ketone enolates with methanol at 65°C. An oxygen atmosphere accelerated the process, and when combined to a bulky monodentatephosphine ligand, the catalytic cycle could be interrupted by preventing the enone reduction.

Subsequent addition of pronucleophiles to the reaction mixture allowed a one-pot methylenation/conjugate addition protocol to be developed: the enone and methoxy adduct were not isolated but reacted *in situ* with an external nucleophile and extra base. In most cases they found to be beneficial to treat the crude reaction mixture with the Ir scavenger Silia*MetS* DMT while stirring the solution, open to the atmosphere, for 1 hour, before the addition of base and nucleophile. The team suggested that the removal of most of the metal catalyst from solution and prevented complications caused by methanol oxidation during the second phase of the reaction.

Initial and/or residual metal content was not disclosed.

Donohoe, J. et al. Angew. Chem. Int. Ed., 2014, 126, 1-5
Donohoe, J et al., Angew. Chem. Int. Ed., 2015, 54, 1642-1645
University of Oxford, Oxford, United Kingdom
Novartis Institute for Biomedical Research, Cambridge, United States

Removal of Mn

Diastereoselective synthesis of cis-N-Boc-4-aminocyclohexanol with reductive ring opening method using continuous flow

N-protected cis-4-aminocyclohexanol derivatives are valuable intermediates in the syntheses of APIs.

Compared with previously reported batch processes, the present multistep flow process is much more efficient in synthetizing valuable 4-aminocyclohexanol derivatives, and avoids some isolation and purification steps.

In this procedure, a nitroso hetero-Diels-Alder cycloaddition step using MnO_2 as the oxidant was fully integrated to a novel continuous flow process for the hydrogenation and ring opening of cycloadducts to the corresponding cis-4-aminocyclohexanols using H-Cube Pro.

It was shown that Raney Nickel was a significantly more performant catalyst compared to 10 % Pd/C and 5 % Ru/C in this last cleavage, and highly selective (\geq 99 % toward final cis-4-aminocyclohexanol). Yet, the Raney Nickel cartridge lost its activity after a few measurements. A possible manganese leaching into the reaction mixture was presumed as the cause for catalyst deactivation. Based on the atom absorption measurements the average extent of manganese was 15 ppm in the reaction mixture. Filling the end of the MnO₂ column with Silia*MetS* AMPA as a Mn scavenger allowed the Raney nickel catalyst activity to be kept constant for longer time.

Initial and/or residual metal content was not disclosed.

Szabó, B. *et al. J. Flow Chem.*, **2019**, 9, 13-17 University of Technology and Economics, Budapest, Hungary

Removal of Os

Osmium scavenging with SiliaMetS

Osmium tetroxide (OsO_4) , is a very reliable and powerful reagent for the cis-dihydroxylation of alkenes. However, osmium compounds, in particular OsO_4 , are highly poisonous, even at low exposure levels, and must be handled with appropriate precautions.

Therefore, it is important to efficiently remove residual osmium from products of interest. A scavenging study on three organic reactions involving osmium reactants were performed. The metal scavenging efficiency of Silia*MetS* is highlighted in the following table.

C_6H_{13} \longrightarrow $H_{13}C_6$	OH OH H ₁₃ C ₆	AD-Mix-β	ОН Н ₁₃ С ₆ ОН	H ₁₃ C ₆ OSO NalO	$H_{13}C_6 O$			
Dihydroxylation Reactior [OsO₄]	1	Sharpless Dihydroxylation [Potassium osmate $(K_2OSO_2(OH)_4]$			Lemieux-Johnson Oxidation $[NalO_{q}, OsO_{4}]$			
Osmium Scavenging using Silia <i>Met</i> S (<i>in %</i>) at 22°C								
SiliaMats	Dihydroxylation	Sharpless Dil	nydroxylation	Lemieux-Johnson Oxidation				
Silidineto	4 equiv, 4 h	8 equiv, 4 h	8 equiv, 16 h	8 equiv, 4 h	8 equiv, 16 h			
Silia <i>MetS</i> Thiol	87	> 98	> 98	87	92			
SiliaMetS Cysteine	89	> 98	> 98	87	91			
Silia <i>MetS</i> DMT	92	97	97 > 98		91			
SiliaMetS Imidazole	87	> 98	> 98	89	91			
Initial Os Concentration (in EtOAc)	132 ppm	25 p	opm	21 ppm				

Note: > 98 % of scavenging means < 0.5 ppm of osmium.

All scavengers were equally effective for Sharpless dihydroxylation or Lemieux-Johnson oxidation. As for simple dihydroxylation, Silia*MetS* DMT was slightly more efficient.

Circumventing an unexpected catalyst poisoning in a Suzuki coupling

In one project, ring methoxylation of a chloronicotinate was achieved by scientists at Dart NeuroScience and Accela ChemBio, followed by a one-pot Suzuki-coupling to yield a biaryl intermediate, one that was needed on a KG scale in further synthetic steps.

Consistent and excellent results were first obtained from R&D (*mg-scale*) up to a first cGMP process-scale tryout (6.4 kg). Yet, subsequent couplings on other batches gave practically no expected birayl compound. Instead, the first methoxylation product simply hydrolyzed from its ester form to the corresponding carboxylic acid!

After investigation, the only time the team could reproduce the non-reactive behavior of the reaction was upon intentionally omitting the $Pd(OAc)_2$ catalyst – hence the idea of catalyst poisoning – but the reaction could still be conducted by adding some more palladium in the reaction mixture (*up to 5 %*). This also leads to downstream issues, as higher palladium loading also implies higher residual palladium, which can greatly impair subsequent reactions.

Among all metal removal strategies, it was the use of Silia*MetS* Thiol that proved to be the best protocol for a simple, fast and efficient removal of palladium. The Pd levels were thus lowered below 200 ppm. The team concluded that "*The subsequent Pd removal step was carried out as planned, and the remainder of the GMP synthesis proceeded well to provide final API in the desired quantity and purity*", as the expected biaryl intermediate was isolated in 73 % yield and 98 % purity.

Initial and/or residual metal content was not disclosed.

Liu, J. et al. Org. Process Res. Dev., **2018**, 22, 111-116 Dart NeuroSciemce L.L.C., California, United States Accela ChemBio Ltd, Shanghai, China

Removal of Pd

Development and scale-up to improve an API's physiochemical and bulk powder properties

Purification process for TAK-117, a selective PI3Kα inhibitor currently in Phase 1b of clinical trials, was developed and greatly improved the overall purity, recovery, physiochemical and bulk powder properties of the isolated product, which was obtained after a Suzuki coupling.

A purification process is required to control the Pd levels within International Conference on Harmonisation (ICH) guidelines.

The revised process was found to produce purified material across a total of 6 batches at 15 and 30 kg scales. Original protocol subjected TAK-117 to 2 treatments with decreasing quantities of GCB and Silia*Mets* Thiol scavenger (*20 wt %*) *each then 10 wt % each*). New protocol uses Silia*Mets* Diamine (*80 wt %*) and GCB (*20 wt %*).

Initial and/or residual metal content was not disclosed.

Papageorgiou, C. D. *et al. Org. Process Res. Dev.*, **2018**, *22*, 296-305 Takeda Pharmaceuticals International Co., Process Chemistry, Cambridge, United States

Discovery of small molecule splicing modulators of survival motor neuron-2 (*SMN2*) for the treatment of Spinal Muscular Atrophy (*SMA*)

Spinal muscular atrophy (*SMA*), a rare neuromuscular disorder, is the leading genetic cause of death in infants and toddlers. SMA is caused by the deletion or a loss of function mutation of the survival motor neuron 1 (*SMN1*) gene. SMN2 (*survival of motor neuron 2*) is a closely related gene which can partially compensate for the loss of SMN1, however coding for a less stable SMN protein.

In recent years, modulating SMN2 pre-mRNA splicing has greatly improved SMA treatments by means of the discovery of LMI070 / Branaplam, a small molecule stabilizing interaction between the spliceosome and SMN2 pre-mRNA.

An efficient two-step synthesis of Branaplam (*from an advanced intermediate S2*) was developed to avoid late stage demethylation which proved challenging upon scaling. Suzuki coupling occurred between pinacol ester of (4-chloro-2-hydroxyphenyl)boronic acid and pyridazine intermediate S2 in the presence of $PdCl_2(dppf)$, CH_2Cl_2 and sodium carbonate, followed by a second Suzuki coupling catalyzed by BrettPhos palladacycle with 1-Boc-pyrazole pinacol boronate to form the Boc protected intermediate. After stirring overnight in the presence of 1M HCl, and then treated with Silia*MetS* DMT (*5 mmol, 2 equiv*) for 20 h, Branaplam was obtained in good overall yield (65 %).

Cheung, A. K. et al. J. Med. Chem., 2018, 61, 11021-11036 Novartis Institutes for Biomedical Research & Novartis Pharmaceuticals, Cambridge, United States

Removal of Pd

Identification of a potent, highly selective, and brain penetrant phosphodiesterase 2A inhibitor clinical candidate

Computational modeling was used to direct the synthesis of analogs of previously reported phosphodiesterase 2A (*PDE2A*) inhibitor with an imidazotriazine core to yield compounds of significantly enhanced potency.

The analog PF-05180999 was subsequently identified as a preclinical candidate targeting cognitive impairment associated with schizophrenia.

Silia*MetS* Thiol was used to remove Pd from the palladium-catalyzed C–H arylation on the pyrazole C-5 position with heteroaryl halide to synthesize the PF-05180999. It was found that C–H arylation chemistry was superior to Suzuki coupling for heteroaromatic derivatives, likely due to instability of the required heteroaryl boronates.

Initial and/or residual metal content was not disclosed.

Helal, C. et al. J. Med. Chem., 2018, 61, 1001-1018 Research API, Pfizer Global Research & Development, Connecticut, United States

Development of a scalable synthesis of an IDO¹ inhibitor featuring a stereospecific Suzuki coupling of a cyclopropane carboxylic acid

A modified synthetic route to an IDO inhibitor was developed, which synthetic steps comprised a chemoselective nitro reduction, a Miyaura coupling (*Scheme 1*) followed by a key stereospecific Suzuki coupling (*Scheme 2*). A systematic evaluation of the Suzuki conditions led to the identification of a robust catalyst/ligand/base combination to reproducibly duplicate the coupling reaction on large scale, without recourse to chromatography given optimized purification methodology.

Post-reaction treatment included activated charcoal (*for pigments, inorganics...*) and Silia*MetS* Thiol (*for residual Pd*): following the reaction work-up, the organic layer was stirred over activated charcoal (125 g) at 20 - 30°C for 2 h. Silia*MetS* Thiol (1.3 kg) was charged to the mixture, and the slurry was stirred for 16 h at ambient temperature and filtered through Celite.

Scheme 2

Purification of final IDO inhibitor was done by treatment with activated charcoal and Silia*MetS* Thiol for removal of pigments, inorganics and residual palladium. After the work-up, the organic layer was distilled under reduced pressure, and the resultant brown viscous liquid was dissolved in MTBE (*8 L*).

Activated charcoal (40 g), silica gel (300 g), and Silia*MetS* Thiol (300 g) were added into this solution and stirred at 20 - 30°C for 18 h. The slurry was filtered through Celite.

40

Overall, the API was delivered in high quality (> 99 %) and good yield (42 %, less than 10 ppm of Pd) for a 5-step synthesis.

¹ Indoleamine-2,3-dioxygenase is a heme-containing intracellular enzyme

Vaidyanathan, R. et al. Org. Process Res. Dev., 2018, 22, 888-897 Chemical Development and API Supply, Bristol Myers Squibb Research and Development Center, India

Scalable Zn-catalyzed regioselective allylation of 1 methyl-1- α -rhamnopyranoside

The construction of C–N bonds by Pd-catalyzed cross coupling of amines with aryl halides, pseudohalides, and aryl ethers is an uncontested tool for the synthesis of functionalized diaryl amines (*widely found in pharmaceuticals, natural products and so on*).

Zinc salts have been shown to promote the Buchwald-Hartwig coupling of azaindoles and azaindazoles with heteroaryl chlorides to provide the corresponding 1-aryl-1H-azaindoles and 1-aryl-1H-azaindazoles.

The optimal Zinc salt was shown to be $Zn(OAc)_2$, because of high conversion, availability, low molecular weight and cost. Silia*MetS* Thiol successfully removed traces of palladium.

Initial and/or residual metal content was not disclosed.

Vaidyanathan, R. et al. J. Org. Chem., 2017, 82, 7420-7427 Chemical Development and API Supply, Bristol Myers Squibb Research and Development Center, India

Removal of Pd

Palladium-mediated synthesis of a near-infrared fluorescent K+ sensor

Potassium (K+) exits electrically excitable cells during normal and pathophysiological activity.

Currently, K+-sensitive electrodes and electrical measurements are the primary tools to detect K+ fluxes. A near-IR, oxazine fluorescent K+ sensor (*KNIR-1*) with a dissociation constant suited for detecting changes in intracellular and extracellular K+ concentrations were synthetized, via a Sonogashira coupling between a halogenated triazacryptand (*TAC*) and a tetrahydroquinoline. The reaction proceeded smoothly.

Remaining palladium in the resultant alkyne was removed using Silia*MetS* DMT, as failure to remove all of the palladium impurities in the following reduction resulted in cleavage of the tetrahydroquinoline from the TAC K+ binding domain during reduction.

& Assumption College, Massachusetts, United States

N-annulated perylene diimide dimers: controlling structural conformation & impact on physical, electronic, optical & photovoltaic properties

The geometry of organic π -conjugated small molecules can impact the morphology of blended-thin films and subsequent performance in opto-electronic devices.

The role of molecular conformation of perylene diimide (*PDI*) dimers designed to act as non-fullerene acceptors in organic solar cells was studied.

SiliaMetS DMT removed all traces of Pd to generate Sonogashira product in near quantitative yield.

This was mandatory in the synthesis as it was found that the subsequent deprotection to form PDI-Ac was found to be sensitive to the amount of Pd remaining in the sample.

42

SILICYCLE 🏈

Suzuki-Miyaura cross-coupling synthesis of O⁶-benzyl glaziovianin A

 O^6 -benzyl glaziovianin A is a potent cytotoxic substance & a potent inhibitor of α , β -tubulin polymerization. Following a Suzuki-Miyaura cross-coupling, Pd-containing O^6 -benzyl glaziovianin A was purified using Silia*MetS* Thiourea.

Purification was done stirring the API with SiliaMetS Thiourea at r.t. in CHCl, for 12 h.

Less than 1 equiv. of SiliaMetS (0.3 equiv) was needed for scavenging!

Okayama University, Okayama, Japan University of Tsukuba, Tsukuba, Japan

Removal of Pd

Removal of Pd

Suzuki-Miyaura cross-coupling synthesis of GDC-0084, a glioblastoma multiforme cancer inhibitor

GDC-0084 is a BBB (Blood-Brain Barrier)-inhibitor of the PI3K pathway, where GBM cancer cells reside.

In order to remove residual palladium from the API, a scavenging study using 40 functionalized resins, silicas & activated carbon was performed. Representative samples containing 2,400 ppm Pd were exposed to Silia*MetS* Scavengers (*20 wt % loading, 14 h*) in a solvent mixture of THF and HOAc (67:33).

Both SiliaMetS Thiol & Thiourea were chosen for lowering residual Pd to ≤16 ppm in G-scale experiments.

On KG-scale, a mixture of the two scavengers was used.

Discovery and synthesis of a direct activator of AMP-Kinase PF-06409577 against diabetic nephropathy

Adenosine monophosphate-activated protein kinase (*AMPK*) is a protein kinase involved in maintaining energy homeostasis within cells. PF-06409577 has been discovered as an indole acid with excellent balance of properties and has now been advanced to first-in-human trials for the treatment of diabetic nephropathy. Key indazoles in the synthesis were prepared by Suzuki coupling to some commercially available 5-bromoindazoles.

SiliaMetS Thiol was used to remove remaining Pd after only 30 min of stirring.

Initial and/or residual metal content was not disclosed.

Cameron, K. et al. J. Med. Chem., 2016, 59, 8068-8081 Pfizer Worldwide Research & Development, Massachusetts & Connecticut, United States

Removal of Pd

Synthesis of Mavatrep: a potent antagonist of transient receptor potential vanilloid-1

Mavatrep, a potent transient receptor potential vanilloid-1 (*TRPV1*) antagonist, was prepared in four steps in 63% overall yield. One of the two key synthetic transformations was the last step Suzuki coupling of an imidazole with an oxaborolole moiety.

Repeated attempts to carry out the Suzuki coupling reaction under the original conditions in presence of $Pd(dppf)Cl_2$ as a catalyst resulted in very poor yields (5-35 %) and formation of high levels of impurities requiring tedious purification. This poor outcome was even worse on larger scale.

After screening various experimental conditions, the best result was obtained by the use of Pd(dtbpf)Cl₂ in DME in the presence of aqueous Na₂CO₃ which led to a remarkable improvement in both reaction rate and yield. The crude salt was obtained in 80-90% as a brownish solid that typically contained about 1400-1600 ppm of residual palladium. Out of the six screened Silia*MetS* (*Diamine, TAAcOH, TAAcOH, Thiol, Thiourea and Triamine*), Thiourea proved to be the most effective palladium scavenger.

1. (), (1.05 equiv) OH Pd(dppf)Cl₂ (0.03 equiv) DME / aq. Na₂CO₃ 5 h , 80°C 2. Silia*Met*S Thiol (30 equiv)

Silia*MetS* Thiourea (*40 equiv*) MeOH/EtOAc, 54-56°C, 1.5 h

84 % Pd content: < 10 ppm

However, an unexpected result was found by the synergistic effect of a combination of two Silia*MetS*, Thiol and Thiourea when used in concert, which was not apparent from the screening array. Their use in combination left the API with less than 10 ppm of Pd.

Wells, K. M. et al. Org. Process Res. Dev., 2015, 19, 1774-1783 Janssen Research and Development, Pennsylvania, United States

Development of an efficient, safe, and environmentally friendly process for the manufacture of GDC-0084

GDC-0084 is a potent and selective dual inhibitor of PI3K/mTOR with the ability to penetrate the blood-brain barrier, as it was discovered in Genentech laboratories (*Roche group*) for the treatment of various brain cancers. Highlights of the synthesis include a phase transfer catalyzed annulation in water, and the last step of the API is the Suzuki-Miyaura cross-coupling of a chloropyrimidine with an arylboronic acid using a palladium catalyst.

In this cross-coupling reaction, an initial catalyst screen found $PdCl_2(dppf) \cdot CH_2Cl_2$ to be superior to $PdCl_2(PPh_3)_2$, $PdCl_2(AmPhos)$, and $Pd(OAc)_2/SPhos$ in terms of conversion. A brief solvent screen using 2 mol % catalyst showed that aqueous THF was the best system, affording more than 98 % conversion after 2 h.

1. PdCl₂(dppf) · CH₂Cl₂ (2 mol %) K₃PO₄ THF/H₂O, 80°C, 2h 2. Silia*Mets* Thiourea (20 wt %) Silia*Mets* Thiourea (20 wt %) Acetic acid / Toluene / pur. H₂O

90°C. 3 h

Pd content: 3 ppm Scale: 3.87 kg

The crude GDC-0084 contained a large amount of residual palladium ($\approx 2400 \text{ ppm}$) was exposed to a variety of scavengers (20 wt % loading) in an effort to reduce the level of metal.

Both Silia*MetS* Thiol and Silia*MetS* Thiourea were found to lower the residual Pd the most efficiently (*lowered down to 3 ppm*).

The main issues in the stage 2 of this process were the high catalyst loading ($2 \mod \%$, $PdCl_2(dppf) \cdot CH_2Cl_2$) for the Suzuki coupling and the large total of solvent volume (58 vol). The optimized Suzuki coupling was successfully demonstrated to provide 7.49 kg of crude GDC-0084 (94 % yield).

Overall, replacing $PdCl_2(dppf) \cdot CH_2Cl_2$ with Buchwald's second generation XPhos PdG_2 catalyst enabled the catalyst loading to be lowered from 2 to 0.5 mol %, and the scavenging procedure to be limited to one single Silia*MetS*, aka Silia*MetS* Thiol (*instead of both Si-Thiol and Si-Thiourea*), and only 10 wt % was sufficient to lower residual Pd to below 10 ppm.

Stumpf, A. et al. Org. Process Res. Dev., **2016**, 20, 751-759 Stumpf, A. et al. ACS Symp. Series, **2016**, 6, 147-173 Small Molecule Process Chemistry Genentech Inc., A member of the Roche Group, California, United States

Multi-kilo delivery of AMG 925 featuring a Buchwald-Hartwig amination and processing with insoluble synthetic intermediates

Amgen describes the development of a synthetic route to manufacture the drug candidate AMG 925 on kilogram scale. The synthetic route features a Buchwald-Hartwig amination using BrettPhos as ligand and conducted to afford 12 kg of product in a single batch.

Yet, the target levels of heavy metal in the drug substance AMG 925 were < 100 ppm, much lower than that found in the crude Buchwald-Hartwig product (700 - 800 ppm).

After the screening of potential scavengers, Silia*MetS* Thiourea was selected as the scavenger of choice since it was the most effective. At 100 wt % relative to crude product, in 80 % (v/v) toluene/MeOH and a total of 15 volumes of solvent, it afforded product in 90 % with less than 2 ppm of residual Pd.

46

Caille, S. *et al. Org. Process Res. Dev.*, **2015**, *19*, 476-485 Amgen Inc., Thousands Oaks, California

Synthesis of EDOT-containing polythiophenes and their properties in relation to the composition ratio of EDOT

Polythiophenes composed of 3,4-ethylenedioxythiophene (*EDOT*) and 3-hexylthiophene (*3HT*) with different composition ratios of EDOT in the repeat unit of the polymer backbone were synthesized by polycondensation reactions. The optical, electrochemical and charge transport properties of the polymers were compared and found to be well correlated with the EDOT composition ratio.

Three kinds of polythiophenes containing 3HT and different EDOT composition ratios were synthesized by polycondensation reactions using direct C–H arylation and Stille coupling, from which Pd residues was removed with Silia*MetS* DMT.

■ Imae, I. *et al. RSC Adv.*, **2015**, 5, 84694-84702 Hiroshima University, Hiroshima, Japan

A Tetraphase case study: palladium scavenging in the development of the first fully synthetic fluorocycline using Silia*MetS* DMT

Process research and development of the first fully synthetic broad spectrum fluorotetracycline in clinical development was reported by Tetraphase Pharmaceuticals. The key reaction was a Dieckmann condensation between a suitable substituted aromatic moiety and a cyclohexanone derivative. Subsequent hydrogenolysis was extensively studied, using a Pd/C catalyst. Without any treatment, residual palladium levels as high as 2,000 ppm were detected.

Silia*MetS* DMT was found to be an excellent metal scavenger to reduce the residual Pd content to more than acceptable levels.

	Scale-Up of Hydrogenation and Pd Scavenging Results							
Entry ¹	Hydrogenation Time (<i>h</i>)	Time for Slurry in EtOH / H ₂ O (<i>h</i>)	Yield (%)	Pd Content (ppm) (after treatment)				
1	12	2	82	0.4				
2	4	17	73	2				
3	7	2	77	0.39				
4	10	2.5	79	1.11				
5	11	4	85	< 0.2				

1 6.2 to 10 wt % Pd/C was used

Conclusion

The reaction was run in THF / MeOH (3.3/10 v/v) under nitrogen with 10 wt % Pd/C. Without any treatment, residual palladium levels were as high as 2,000 ppm, but after stirring with 50 or 100 wt % Silia*MetS* DMT in MeOH for 2 - 3 h, residual levels were consistently below 1.5 ppm.

48

M. Ronn *et al.*, *Org. Proc. Res. Dev.*, **2013**, *17*, 838-845 Tetraphase Pharmaceuticals Inc., Massachusetts, United States

An AstraZeneca case study: palladium removal using SiliaMetS Thiol

AstraZeneca published a paper on removal of palladium impurities in a pilot-scale process.

The work-up method found to work the best was a treatment with Silia*MetS* Thiol (25 % *w/w* or ~ 1.4 kg) at 50°C to purify more than 6.7 kg of material. Final residual palladium concentration was as low as 1 - 2 ppm.

Removal of Pd

A Pfizer case study: palladium removal using Silia*MetS* Thiol after a Buchwald-Hartwig amination

Silia*MetS* Thiol was employed by researchers at Pfizer for Pd removal during the preparation of a naphthalenopiperazine HCl salt. The product from the Buchwald-Hartwig amination of naphthyl bromide with Boc-piperazine was telescoped as a toluene solution and the Boc protecting group was subsequently cleaved with HCl gas to afford the HCl salt containing over 1,300 ppm Pd.

A water / THF solution of this material was then treated with Silia*MetS* Thiol (50 *wt* %) at 35°C for 17 h and, following crystallization from water / THF.

Conclusion

The HCl salt was obtained with a 90 % yield with only 2 ppm Pd. This chemistry was demonstrated on a kilogram scale.

J. Magano et al., J. Synth. Commun., 2008, 38, 3631-3639 Research API, Pfizer Global Research and Development, Connecticut, United States Separation Sciences, Pfizer Global Research and Development, Connecticut, United States Research API, Pfizer Global Research and Development, Michigan, United States Supply Chain API, Pfizer Global Research and Development, Michigan, United States

An Amgen case study: Palladium removal using various resins

Amgen published a chapter in "Catalysis of Organic Reactions" related to the use of scavengers for the removal of palladium in small to multi-kilogram production scales.

In this study, several parameters were evaluated, such as scavenging efficiency, influence of the scavenger loading and loss of product to adsorption (*recovery*). The study was based on a palladium-catalyzed sulfonamide coupling and scavenger screening was performed at both room temperature and 65°C using 31 different scavengers.

Amgen Scavenger Screening Results

Conditions: 20 mg of each scavenger (*20 % w/w*) were placed in 2 mL HPLC vials each containing 1 mL of crude reaction mixture containing 100 mg of product. Each vial was sealed and agitated overnight. Initial palladium concentration was 423 ppm.

The best scavenger identified during their study was the Silia*MetS* Thiourea providing the lowest Pd content (*residual palladium concentration: 3 % or < 14 ppm*) without product sequestration. They mentioned that Silia*MetS* Thiourea was used extensively in early process development work.

Cost Comparison for Most Efficient Scavengers (≥ 80 %)

At pilot-plant scale, the optimal compromise between the cost per ppm removed and the scavenging efficiency is crucial.

Results highlighted by the graph reduced the number of options to only four candidates for further evaluation: in pole position Silia*MetS* Thiourea, followed by TMT, TMT-Na₃ and Smopex 234.

Note: SiliaMetS DMT does not appear in this study because it had not been commercialized yet at the time of the study.

Top Four Scavengers Overview

A screening validation was conducted on 1-g scale purification (*10 mL of solution*) with 20 % w/w of the four best scavengers at 65°C overnight. After filtration, residual metal concentration was analyzed by ICP-MS and product recovery was determined by HPLC. Silia*Mets* Thiourea was chosen for the large scale purification.

Screening Validation Results on Top 4 Scavengers								
Scavengers	Residua Screening Exp. in Solution	Metal Concentration (ppm)Validation Exp.Validation Exp.in Solutionin Solid Product		Product Recovery	Commentary from Amgen			
SiliCycle Thiourea	14	11	158	102 %	Best performance			
ТМТ	33	15	264	104 %	Fine in suspension, filterability concerns on scale			
Smopex 234	36	38	496	84 %	Favorable cost but product recovery inadequate			
TMT-Na3	85	81	1 555	78 %	Very basic compounds (<i>not effective with base-sensitive groups</i>) and low recovery			
Initial Concentration	423 ppm	381 ppm	3,577 ppm	-	-			
Purification Scale	100 mg	1 g	1 g	1 g	-			

Please see Amgen's chapter for further details (see reference below).

Amgen's Conclusion

"Scavengers offer a practical and expedient option for removal of palladium from process streams to ensure quality of organic products... The screening protocol involves treatment of a candidate process stream with 20 % w/w scavenger on product at both room temperature and 65°C followed by analysis of Pd and product adsorption. High-temperature treatment increased the efficiency of Pd removal... Evaluation of process costs is key to identifying Pd removal solutions. While scavengers add cost to a process, their use is often justified by the speed to production in early phase development."

J. Allgeier et al., « Application of Scavengers for the Removal of Palladiumin Small Lot Manufacturing », Catalysis of Organic Reactions, Chapter 5., Amgen Inc., Thousand Oaks, California

Pd scavenging after a Suzuki-Miyaura coupling using a GlaxoSmithKline published reaction

A metal scavenging study was performed following the synthesis of a key synthetic intermediate obtained by the Suzuki-Miyaura coupling presented in scheme below. Various parameters were investigated including the efficiency of Silia*MetS* in different formats, scavenging kinetics, intermediate recovery and purity.

Small-Scale Scavenging (Synthesis Scale ~ 5 g)

The table below shows the most efficient Silia*MetS* Metal Scavenger products for the treatment of the reaction mixture after work-up in both bulk and fixed-bed mode bed (*pre-packed SPE cartridges*).

	SiliaMetS Scavenging Efficiency & Intermediate Recovery Results (in %)						
Scavengers	Batch Reactor Mode (Bulk)		Fixed-Bed Mode (SPE)	Intermediate Recovery			
	5 equiv, 4 h, 22°C	5 equiv, 4 h, 40°C	6 mL / 1 g				
Silia <i>MetS</i> Thiol	95	> 99	98	> 99			
SiliaMetS Thiourea	83	93	99	98			
SiliaMetS Cysteine	84	91	97	> 99			
Silia <i>MetS</i> DMT	97	> 99	> 99	98			
Initial Pd Concentration	179 ppm	in MTBE	76 ppm in Toluene	-			

Scavenging Conclusion

Addition of 5 equivalents of Silia*MetS* products for 4 h at the end of the reaction reduces the residual metal concentration to single digit ppm.

Recovery & Purity Conclusion

Palladium was completely removed, while the organic compound was not sequestrated by Silia*MetS* products. No impurities were released.

Larger Scale Scavenging (Synthesis Scale ~ 55 g)

Silia*MetS* Metal Scavengers in pre-packed Silia*Sep* Flash Cartridges are a great alternative for metal removal at process development scale. These cartridges offer excellent scavenging efficiency as shown by the results in associated table.

SILICYCLE-TURASION 0130 Externing Lander Statement and a statistics

After the first run, almost all the palladium was captured.

After three runs, less than 1 ppm remained in solution.

<u>Results</u>

SiliaSep Scavenging Results (in %)				
Run #	Scavenging			
1	97			
2	99			
3	> 99			

Experimental Conditions

52

Scavenger Used	Silia <i>MetS</i> Thiol
Cartridge Size	120 g
Nb. Equivalent	25 equiv
Solution Volume	1 L
Flow Rate	40 mL/min

Initial Pd Concentration: 700 ppm in AcOEt

J. F. Toczko et al., Org. Proc. Res. Dev., 2008, 12, 896-899 Chemical Development, GlaxoSmithKline, North Carolina, United States

The effect of variation of phosphorous ligand nature on scavenging

Even for the same metal, a variation in the scavenging efficiency can be observed depending on the nature of the products present in the solution to be treated. For example, steric hindrance and the electronic effects of the phosphorous ligands are factors influencing the removal of the metal.

The same Suzuki coupling was performed using different phosphorous ligands: three monodentate and three bidentate. For comparison purposes, scavenging screening was done by using the same two sets of conditions. No optimization was done to increase Silia*MetS* performance. By experience, using longer reaction times or higher temperatures will allow better results.

SiliaMetS Scavenging Results with Monodentate Ligands (<i>in %</i>) with 4 equiv, 4 h							
Silia <i>MetS</i>	Triphenylphosphine [PPh ₃]		Tri(o-tolyl)phosphine [P(otol) ₃]		Tri-n-butylphosphine [PnBu ₃]		
	00						
	22°C	60°C	22°C	60°C	22°C	60°C	
SiliaMetS Thiol	70	97	87	96	26	85	
SiliaMetS DMT	95	97	95	> 99	36	87	
Initial Pd Concentration:	27 ppm in EtOAc		84 ppm in EtOAc		90 ppm in EtOAc		

SiliaMetS Scavenging Results with Bidentate Ligands (<i>in %</i>) with 4 equiv, 4 h								
	1,1'-bis(diphenylph [dp	osphino)ferrocene pf]	1,3-bis(diphenylpl [dp	nosphino)propane pp]	(+/-) BINAP			
Silia <i>MetS</i>					ph Ph-P Ph Ph			
	22°C	60°C	22°C	60°C	22°C	60°C		
SiliaMetS Thiol	50	69	75	90	31	56		
SiliaMetS DMT	14	22	95	98	41	64		
Initial Pd Concentration:	63 ppm in EtOAc		93 ppm in EtOAc		16 ppm in EtOAc			

Conclusion

In all cases, Silia*MetS* DMT and Thiol remained the best scavengers throughout the study, even though there is a variation in the nature of the ligand.

As expected, scavenging was more difficult with bidentate phosphine ligands. The best conditions were using 4 equiv for 4 h, at 60° C.

Polyhedral oligomeric silsesquioxanes (*POSSs*) are promising building blocks for organic-inorganic hybrid materials

Polyhedral oligomeric silsesquioxanes (*POSSs*) are promising building blocks for organic-inorganic hybrid materials, yet they have rarely been studied because the synthesis of bifunctional POSS monomers is a very difficult one in general.

In this work, a novel molecular design of a POSS monomer has been proposed and it was shown that substituents on the completelycondensed or incompletely-condensed POSSs can be widely varied. Furthermore, the resulting polymers are suitable for optically transparent materials because of their high thermal stability and transparency. The properties were controlled by the substituents on the silicon atoms of the POSSs and comonomers. The platinum-catalyzed hydrosilylation polymerization of the bifunctional POSS monomers was performed with siloxane comonomers.

For the measurement of optical properties, the obtained polymers films were fabricated according to the solution-casting method (*refer to experimental protocol*), and were approximately 50 µm thick, measured with a thickness gauge. They showed high transparency in the 380 - 400 nm range.

Experimental Protocol: A polymer (0.1 g) was dissolved in $CHCl_3$ (1 mL) in the presence of SiliaMetS Thiol, and the solution was filtered and cast onto a glass substrate.

54

Initial and/or residual metal content was not disclosed.

Naka, K. et al. J. Polymer Sci. Part A: Polymer Chem., 2018, 9, 4108-4112 Kyoto Institute of Technology, Sakyo-Ku, Japan

Removal of Ru

Electrostatic self-assembly and covalent fixation (*ESA-CF*) process for the synthesis of linear and cyclic polymers and their topology effects on thin-film electron mobility

A pair of topologically contrastive, linear and cyclic polymers having densely appended perylene diimide (*PDI*) units have been prepared by means of an electrostatic self-assembly and covalent fixation (*ESA-CF*) process.

As a first step, a pair of linear and cyclic poly(sodium acrylate) of different segment lengths were prepared through an atom transfer radical polymerization, followed by the end-capping reaction and subsequent ring-closing metathesis in the presence of Hoveyda-Grubbs catalyst second generation.

Unreacted precursor as well as unassigned side products were removed by flash chromatography and Ru removal with Silia*MetS* DMT.

Removal of Ru

Photoinduced topological transformation of cyclized polylactides for switching the properties of homocrystals and stereocomplexes

Cyclized poly(L-lactide) (*PLLA*) and poly(D-lactide) (*PDLA*) incorporating an o-nitrobenzyl group as a photocleavable linker were synthesized and photoirradiated for topological transformation to form photocleaved linear polylactides.

The o-nitrobenzyl group was chosen as it is one of the most widely used photolabile protecting groups due to its prompt removal.

Two cyclic PLLA and PDLA with this photocleavable linker were prepared via a Hoveyda-Grubbs catalyzed olefin metathesis, a polymerization known to form highly optically pure polylactides without degradation in the stereochemistry. Silia*MetS* DMT was used to remove residues of ruthenium.

It was shown that the enthalpy of the photocleaved cyclized polylactides was much lower than that of the linear prepolylactides, hence the crystalline-amorphous interface is more stable for the cyclized polylactides arising from the topology.

Removal of Ru

Regioselective ring-opening metathesis polymerization of 3-substituted cyclooctenes

Allyl-substituted cyclooctenes with various sidechains [amides, methoxy, methoxy-terminated oligo(ethylene glycol)s, and tetrahydrofurfuryloxy groups] were prepared as monomers and polymerized by ring-opening metathesis polymerization (*ROMP*) using Grubbs second-generation catalyst.

In all cases, the ROMP of allyl-substituted monomers proceeded in a regio- and stereoselective manner to afford polymers with remarkably high head-to-tail regioregularity with high trans-stereoregularity.

Poly(3ROCOE) were purified from contaminating Ru with SiliaMetS DMT (O.N. at 40°C)

56

An Idenix case study: ruthenium removal in the macrocyclization of dienylureas via RCM, using Silia*MetS* DMT

A novel assembly of two structurally related 14-membered ring macrocyclic hepatitis C virus protease inhibitors was reported by Idenix Pharmaceuticals. Key to their successful construction was an ultimate ring-closing metathesis step on the highly functionalized dienyl-urea via Zhan Catalyst-1B (*Ru-based catalyst*).

Several methods have been reported to remove Ru by-products, and were investigated in this study with some variations, including the use of tris(hydroxymethyl)phosphine, lead tetraacetate, TPPO, DMSO followed by silica gel filtration, adsorption onto silica gel, activated carbon and silica gel chromatography, treatment with mercaptonicotinic acid (*MNA*) and washing with aqueous NaHCO₃, and the use of supercritical fluid extraction. Resulting Ru levels of those methods vs Silia*MetS* DMT treatment were analyzed by ICP-OES and are listed below.

Effect of Reaction Conditions and Purification on Ru Content and Yield of Protease Inhibitor							
Entry	Reaction Conditions	Ru Reduction Operation	Ru content (ppm)	Yield (%)			
		MNA / NaHCO $_{_3}$ wash ; charcoal ; silica gel filtration	14 (initial)	-			
1	250 mL/g diene 4.9 mM 1.5 wt % catalyst	1 st MeOH trituration	12	63			
		2 nd MeOH trituration	7.5	58			
		Charcoal ; silica gel filtration	120 (initial)	-			
2	250 mL/g diene 4.9 mM 1.5 wt % catalyst	1 st MeOH trituration	34	81			
		2 nd MeOH trituration	20	75			
		Charcoal ; silica gel filtration	120 (initial)	-			
3	250 mL/g diene 4.9 mM	1 st MeOH trituration	48	79			
		5/4 v/v DCE / MeOH crystallization	4.6	61			
		Charcoal ; silica gel filtration	880 (initial)	-			
4	80 mL/g diene 15.2 mM	1 st MeOH trituration	300	84			
		Toluene crystallization	22	45			
		Charcoal ; silica gel filtration	880 (initial)	-			
5	80 mL/g diene 15.2 mM	1 st MeOH trituration 2:1 v/v	300	84			
		EtOAc / n-heptane crystallization	19	51			
6	80 mL/g diene 15.2 mM		380 (initial)	-			
0	1.25 wt % catalyst		66	75			
7	160 mL/g diene 7.6 mM	CilioMotS DMT 16 b tractment filtration	200 (initial)	-			
1	1.25 wt % catalyst		3.6	86			
	250 mL/g diene 4.9 mM		180 (initial)	-			
ð	1.25 wt % catalyst		7.7	89			

Conclusion

As one can easily note, treatment with Silia*MetS* DMT gave a much lower Ru residual content conjointly with the highest final yields. Hence, low yield losses (*11 - 14 %*) and high purities (*98 %*) were achieved, together with excellent Ru levels observed (*as low as 3.6 ppm*), indicating the strong utility of this approach in Ru removal in the synthesis of macrocycle HCV PIs IDX316.

B. A. Mayes *et al.*, *Org. Proc. Res. Dev.*, **2013**, *17*, 811-828 Idenix Pharmaceuticals Inc., Massachusetts, United States

Removal of Ru

Ruthenium scavenging

Ruthenium-based catalysts are commonly used in organic synthesis, mainly in olefin metathesis reactions [*ROM(P)* and *RCM*]. Grubbs and Hoveyda-Grubbs catalysts are the most popular ruthenium-based complexes in this field of application. Complete ruthenium removal can be tedious using conventional methods.

Under various conditions, several Silia*MetS* are known to be excellent scavengers to obtain minimal tolerated concentrations of residual ruthenium.

A ruthenium scavenging study was conducted and various parameters were investigated in order to learn more about their influence on the scavengers' robustness as well as to establish the best experimental conditions.

Ruthenium Scavenging Results using SiliaMetS (in %)								
SiliaMetS	Grubbs 1 st Gen.		Grubbs 2 nd Gen.		Hoveyda-Grubbs 1 st Gen.		Hoveyda-Grubbs 2 nd Gen.	
	Toluene ¹	DMF ²	Toluene ¹	DMF ²	Toluene ¹	DMF ²	Toluene ¹	DMF ²
Silia <i>MetS</i> Thiol	90	96	-	99	97	93	-	-
SiliaMetS Thiourea	-	98	-	96	97	98	-	-
Silia <i>MetS</i> DMT	95	99	> 99	99	> 99	98	98	99
SiliaMetS Diamine	99	99	91	94	> 99	98	-	90

Notes: Silia*MetS* Cysteine and Imidazole were not screened in this study. Only Silia*MetS* results higher than 90 % are presented in this table.

Experimental Conditions

Nb. Equivalent: 18 equiv of SiliaMetS, 16 h, 80°C

² 4 equiv of Silia*MetS*, 16 h, 80°C

Initial Concentration: 500 ppm for all ruthenium-based catalysts

Conclusion

For all Ru-catalyzed reactions, the best scavenging was achieved using Silia*MetS* DMT. For most experiments, little or no difference was observed when using toluene or DMF.

Removal of Ru

SiliaMetS vs other purification methods for ruthenium scavenging

The use of Silia*MetS* to remove ruthenium catalysts after a ring-closing metathesis (*RCM*) reaction is a very effective purification method. One of its main advantages is that no product is lost during the purification step.

EtO ₂ C CO ₂ Et	Degassed DCM Grubbs 2 nd Gen.	EtO ₂ C CO ₂ Et	
	r.t., overnight		

quantitative yield

	Scavenging Results for Various Purification Methods* (in %)						
Scavenging	Scavenger Filtration over packed bed of ²				Flash Purification		
	Silia <i>MetS</i> DMT ¹	Act. Carbon	Celite	Silica	Manual	SiliaSep Cart.	
Ruthenium captation	93	73	24	58	70	73	

¹ Using 4 equiv, 16 h, 22°C.

² Solution is passed directly on a packed bed of various adsorbents, which was then washed with the same quantity of solvent.

* Quantitative yield obtained for each purification method (*adjusted in function of the residual concentration of catalyst*). No impurities were generated in all cases using the different methods (*determined by NMR*).

Removal of Sn

Tin acetate-promoted Buchwald-Hartwig couplings of heteroaromatic amines

Regioselective manipulation of hydroxyl groups in polyols has been critical to carbohydrate chemistry.

A robust selective allylation of 1-methyl-L- α -rhamnose was developed using n-Bu₂SnO as the catalyst and proton sponge as optimal base for high regioselective control. The optimized condition afforded the 3-O-allylated rhamnose in excellent regioselectivity (> 20:1) and 82 % isolated yield on a 50 g scale.

1) nBu₂SnO (0.2 - 0.5 equiv) RBr (1.1 - 2.0 equiv) TBAB (0.5 equiv) Proton Sponge (1.2 equiv) CH₂CN, 69°C

2) SiliaMetS Cysteine (20 % wt) OR SiliaMetS TAAcONa (20 % wt)

83.8 - 96.1 % conv. 17:1 - 34:1 A scalable isolation/purification process was developed which afforded the desired product in 72 % yield with 1530 ppm of Sn.

The residual Sn level can be further reduced to < 20 ppm by treatment with Silia*MetS* Cysteine & TAAcONa.

Residual Sn (ppm)									
Experimental Step	Starting Level	End Level	Recovery (%)						
Extractive Work Up	-	1,530	72						
1st treatment 20 wt % with SiliaMetS Cysteine	1,530	273	92						
2nd treatment 20 wt % with SiliaMetS Cysteine	273	31.9	93						
1st treatment 20 wt % with SiliaMetS TAAcONa	1,530	267	91						
2nd treatment 20 wt % with SiliaMetS TAAcONa	267	19.5	95						

This catalytic system also showed outstanding potential in the selective benzylation of the same substrate.

The isomeric purity remained unchanged after the scavenger treatment.

SF

ONa

Li, X. et al. Org. Process Res. Dev., 2017, 21, 1653-1658

Process Development & Process Chemistry, DOW AgroSciences, Michigan & Indiana, United States

Tin scavenging using SiliaBond Carbonate vs SiliaMetS Cysteine

SiliCycle also provides a quaternary ammonium salt grafted on silica to which a carbonate group is ionically bounded. The latter has shown to be an excellent alternative for tin retrieval from organic mixtures.

Stille Reaction

Tin scavenging was demonstrated on a Stille coupling in which Bu_3SnBr is the major tin by-product. In each test, residual Pd was scavenged in its entirety (from 24 mg/L to < 0.1 mg/L).

	Tin Scavenging (<i>in %</i>)							
Scavenger	4 h, 8 equiv, 22°C	4 h, 16 equiv, 22°C						
Silia <mark>Bond</mark> Carbonate	91	99						
SiliaMetS Cysteine	77	99						

SiliaBond Carbonate SiliaMetS Cysteine $\int_{C}^{Br} \underbrace{Pd(PPh_{3})_{4}}_{Toluene,} + Bu_{3}SnBr$

(CO_{3²⁻)_{0.5}}

Conclusion

Scavenging yields were excellent with both scavengers. Hence, Silia*Bond* Carbonate was found to be of the same high efficiency as Silia*MetS* Cysteine to scavenge tin compounds of R₃SnX type.

NC

Removal of Sn

Tin scavenging using SiliaMetS Cysteine & TAAcONa

The removal of tin residues can often be an issue due to the high toxicity of this metal. Traditional removal methods for this impurity are treatment with an aqueous solution of KF, NH, OH or NaOH, or with bases such as DBU. However, the efficiency of these methods can vary and may be inapplicable for some particular compounds.

Both SiliaMetS Cysteine & TAAcONa can be used to efficiently remove tin residues from organic mixtures, as demonstrated below.

Removal of U

Uranium XAFS analysis of kidney from rats exposed to uranium

The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. In this study, micro-X-ray absorption fine-structure (mXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate.

In the preparation of uranium standards for XAFS analyses, uranium adsorbed on 6 different metal scavengers were prepared: SiliaMetS TAAcOH, SiliaMetS Cysteine, SiliaMetS Amine, SiliaMetS DMT, SiliaMetS Imidazole & SiliaMetS Thiol.

resin were above 15,000 µg/g.

The concentrations of uranium bound to the functionalized

SiliaMetS Thiol

SH

Uranium Concentrations Scavenger Uranium concentration ($\mu g/g$) SiliaMetS TAAcOH 149,000 SiliaMetS Cysteine 77,640 SiliaMetS Amine 37,400 SiliaMetS DMT 87,530 SiliaMetS Imidazole 74,400 SiliaMetS Thiol 22,500

Homma-Takeda, S. et al., J. Synchrotron Rad., 2017, 24, 456-462 National Institute for Quantum and Radiological Science and Technology, Chiba, Japan Japan Synchrotron Radiation Research Institute, Hyogo, Japan

Removal of Pd Ru

A Genentech case study: palladium and ruthenium removal in the synthesis of AKT inhibitor Ipatasertib using Silia*MetS* Thiol (*multi-kilogram scale*)

The first-generation process to manufacture Akt inhibitor Ipatasertib through a late-stage convergent coupling of two challenging chiral components on a multi-kilogram scale was reported by Array BioPharma.

A carbonylative esterification and subsequent Dieckmann cyclization was developed to forge a cyclopentane ring in the target. A second key chiral component, a β2-amino acid, was produced using an asymmetric aminomethylation (*Mannich*) reaction.

Upon scale-up, the deprotection of the Boc-API for the preparation of the Ipatasertib mono-HCl salt was easily completed in toluene in 12 N HCl.

The aqueous layer was then basified to $pH \ge 12$ with aqueous NaOH in order to extract the Ipatasertib free-base with DCM. The DCM solution was subsequently treated with charcoal and Silia*MetS* Thiol to remove colored impurities and trace heavy metals resulting from previous synthetic steps.

These metals consisted in Palladium (*Pd/C catalyst in a Noyori Asymetric Transfer Hydrogenation of ketone*), Ruthenium [(R,R) MsDPEN-Ru(p-cymene)Cl) catalyst for asymmetric ketone reduction] and Titanium (*TiCl_a catalyst in asymmetric Aldol addition*).

In Akt inhibitor synthesis, Genentech describes a scalable catalytic asymmetric hydrogenation process for the multi-kilogram scale production of a β 2-amino acid, the last building block. An extensive catalysis screening and optimization study was done and identified a simple Ru-BINAP catalyst system to directly afford the S product in high enantiomeric excess and yield was reported.

The final process enabled the multi-kilogram production in > 99 % ee to be used as a key component for one of their clinical candidates.

Process Mass Intensity & Kg Solvents Input / Kg of $\beta 2\mbox{-amino}$ acid

Conclusion

For 138 kg of the crude amino acid, 8.3 kg of Silia*MetS* Thiol were necessary. Filtration of the DCM solution over Celite[®] resulted in a 99 % yield of Ipatasertib free-base with a ruthenium content of less than 5 ppm (*ICP-OES*).

J. Lane, T. Remarchuk *et al.*, *Org. Proc. Res. Dev.*, **2014**, *18*, 1641-1651 Small Molecule Process Chemistry, Genentech, Inc., a member of the Roche Group, California, United States Array BioPharma Inc., Colorado, United States

T. Remarchuk *et al.*, *Org. Proc. Res. Dev.*, **2014**, *18*, 1652-1666 Small Molecule Process Chemistry, Genentech, Inc., a member of the Roche Group, California, United States Array BioPharma Inc., Colorado, United States

T. Remarchuk *et al.*, *Org. Proc. Res. Dev.*, **2014**, 18, 135-141 Small Molecule Process Chemistry, Genentech Inc., A member of the Roche Group, California, United States Catalysis and Chiral Technologies, Johnson Matthey, Cambridge United Kingdom WuXi AppTec Co., Ltd., Shanghai, China

A Johnson & Johnson case study: Sonogashira reaction & metal scavenging of various metals

Johnson & Johnson, in collaboration with Solvias, published a paper in which a mild Sonogashira reaction was developed using various metal catalysts. Treatment with Silia*MetS* Thiol simultaneously removed Pd, Cu & Al. Residual concentrations were below 50, 10 and 3 ppm respectively, in the isolated product 3.

62

Note: copper comes from a previous synthesis step.

I. N. Houpis *et al.*, *Org. Proc. Res. Dev.*, **2009**, *13*, 598-606 Johnson & Johnson PRD, API Development, Belgium, and Solvias A.G., Synthesis and Catalysis, Switzerland

A Pfizer Global R&D case study: palladium and copper removal on a large scale batch using Silia*MetS* Thiol

Pfizer published a paper on removal of palladium & copper impurities from a 20 kg pilot-plant batch. They made two subsequent treatments using Silia*MetS* Thiol (20 % + 7 % w/w) at room temperature for 12 hours. After scavenging with Silia*MetS* Thiol, the desired product was obtained with a yield of 76 %, containing only 17 ppm Pd and 1 ppm Cu.

An alternative method was also tried using 80 % w/w of Deloxan THP (*Degussa AG*) overnight followed by basification with Na₂CO₃. Residual metal concentration with this method was higher compared to that of Silia*MetS* and the yield was lower.

Screening Validation Results on Top 4 Scavengers										
Scavengers	Residual Metal Co	Vield (%)								
Scavengers	Pd	Cu	neiu (70)							
Degussa Deloxan THP	20	2	60 - 70							
SiliCycle SIliaMetS Thiol	17	1	76							

Silia*MetS* allows lower residual metal concentration & higher yield with fewer manipulations!

R. L. Dorow *et al.*, *Org. Proc. Res. Dev.*, **2006**, *10*, 493-499 Pfizer Global Research and Development, Michigan, United States

Removal of Pd Fe Zn

Multiple metal scavenging

SiliaMetS can be used to remove multiple metals in the same reaction with excellent efficiency.

The Negishi coupling presented in scheme above was performed to show that Silia*MetS* can be used to simultaneously remove residual palladium, iron and zinc present after the reaction.

Multiple Removal Scavenging Results (in %)										
SiliaMetS	Pd	Fe	Zn							
SiliaMetS Cysteine	95	> 99	98							
SiliaMetS DMT	83	93	99							
SiliaMetS Imidazole	84	91	97							
SiliaMetS TAAcONa	97	> 99	> 99							
Initial Concentration (in THF)	188 ppm	110 ppm	6 ppm							

Conditions: 4 equiv of SiliaMetS (relative to palladium), 4 h, 22°C.

For Zinc removal, all tested scavengers gave excellent results. Overall, for multiple removal scavenging results, Silia*MetS* Cysteine and TAAcONa showed to be the most versatile scavengers.

Scavenging of Pd(dtbpf) in Suzuki coupling for the synthesis of a DGAT-1 inhibitor

Diacyl glycerolacyltransferase-1 (*DGAT-1*) is one of two known isoforms that catalyse the final step of triglyceride biosynthesis and hence could play a role in the development of obesity and insulin resistance.

In a DGAT-1 inhibitor synthesis project, a kilogram-scale Suzuki-Miyaura reaction was described by Abbott researchers in 2010.

This synthesis was reproduced in SiliCycle's labs and the resulting contaminated mixtures were treated with our most promising scavengers.

Effe	Effect of Time in the Scavenging Efficiency with 4 equiv. at 22°C (<i>in</i> %)									
Sequencers / Conditions	1	h	4	h	16 h					
Scavengers / Conditions	Pd	Fe	Pd	Fe	Pd	Fe				
SiliaMetS Thiol	53	19	72	31	90	67				
SiliaBond Tosic Acid	11	54	24	92	22	95				

DMF : EtOH : H₂O 20°C, 20h

89%

Effect of Time in the Scavenging Efficiency with 8 equiv. at 22°C (<i>in %</i>)										
Scavengers / Conditions	1 h		4 h		16 h					
	Pd	Fe	Pd	Fe	Pd	Fe				
Silia <i>MetS</i> Thiol	69	12	86	37	96	69				
SiliaBond Tosic Acid	24	91	33	91	17	92				

Effect of Time in the Scavenging Efficiency with 4 equiv. at 45°C (<i>in</i> %) Treatment with 2 Scavengers Simultaneously: Silia <i>MetS</i> Thiol & Silia <i>Bond</i> Tosic Acid										
Sequencers / Conditions	1 h		4 h		16 h					
Convergers / Contaitions	Pd	Fe	Pd	Fe	Pd	Fe				
SiliaMetS Thiol & SiliaBond Tosic Acid	د Silia <i>Bond</i> Tosic Acid 78 81 91 81 96 81									

64

Conclusion

In this case again, it was Silia*MetS* Thiol that proved to be the preferred scavenger for palladium under any conditions. As for iron, Silia*Bond* Tosic Acid was, again and by far, the most effective.

Scavenger combinations can achieve, in some cases, even higher removal of both metals. The best conditions were using 4 or 8 equiv at 22°C for 16h.

M. Ravn et al., Org. Proc. Res. Dev., 2010, 14, 417-424
D. Barnes et al., Org. Proc. Res. Dev., 2009, 13, 225-229

Abbott Laboratories, North Chicago, Illinois, United States

Removal of Fe Pd

Scavenging of Pd-118 using SiliaMetS metal scavengers

Some of Silia*MetS* Metal Scavengers have a particularly powerful scavenging behavior toward reagent Pd-118.

Pd-118, or $Pd(dtbpf)Cl_2$ is a strong, homogeneous catalyst that has been shown to be very stable and active for all coupling reactions, especially aminations, reductive carbonylations and Suzuki couplings. Nevertheless, metals from this active catalyst can act as severe contaminants and be tricky to get rid of.

Pd-118 Complex

Behavior of SiliaMetS Metal Scavengers Toward this Specific Complex (catalyst only in solvent)

Scavenging Efficiency of Preliminary Screening (in %)												
Convergere	DMF,	22°C	DMF,	DMF, 60°C		Methyl-THF, 22°C		Methyl-THF, 60°C		DCM, 22°C		
Scavengers	Pd	Fe	Pd	Fe	Pd	Fe	Pd	Fe	Pd	Fe		
Silia <i>MetS</i> DMT	76	45	97	51	85	63	97	47	96	83		
SiliaMetS Thiol	51	28	72	34	50	50	88	64	36	48		
SiliaMetS Cysteine	59	49	67	49	70	60	93	52	53	50		
Silia <mark>Bond</mark> Tosic Acid	25	47	8	54	70	69	85	83	80	78		

Conditions: Palladium complex solutions were made in DMF, methyl-THF and dichloromethane, and shaken with 4 equiv. of metal scavengers for 4 hours, at room temperature or 60°C.

Scavenging Conclusion

Silia*MetS* DMT and Cysteine proved to be the preferred scavengers for Palladium (*Pd*) in this application.

As for Iron (Fe), SiliaBond Tosic Acid (SCX) was the best scavenger.

Furthermore, very good removal of both metals could be achieved through a combination of both scavengers.

Scavenging of Pd(dtbpf)Cl₂ in Suzuki coupling for the preparation of arylpyrrolidines

Abbott Laboratories has used Pd(dtbpf)Cl₂ for the preparation of arylpyrrolidines resulting in a final mixture contaminated with Pd and Fe.

SiliCycle has used this latter synthesis as a control reaction to study the effect of our Metal Scavengers on such contamination. The final crude mixtures were treated with the most promising metal scavengers and further optimization was carried out.

Overview of Metal Residues Scavenging Efficiency (*in* %) in Various Experimental Conditions of a Suzuki Coupling for the Preparation of Arylpyrrolidines

Effect of Time in the Scavenging Efficiency with 4 equiv at 22°C (<i>in</i> %)										
Scavengers / Conditions	1 h		4 h		16 h					
	Pd	Fe	Pd	Fe	Pd	Fe				
Silia <i>MetS</i> DMT	78	44	89	51	98	35				
Silia <i>Bond</i> Tosic Acid	34	65	34	70	36	86				

Effect of Time in the Scavenging Efficiency with 8 equiv at 22°C (in %)										
Scavengers / Conditions	1 h		4 h		16 h					
	Pd	Fe	Pd	Fe	Pd	Fe				
SiliaMetS DMT	90	53	94	56	96	47				
SiliaBond Tosic Acid	31	85	32	89	33	91				

Effect of Time in the Scavenging Efficiency with 4 equiv at 45°C (<i>in %</i>)										
Scavengers / Conditions	1 h		4	h	16 h					
	Pd	Fe	Pd	Fe	Pd	Fe				
Silia <i>MetS</i> DMT	81	57	90	58	95	34				
Silia <i>Bond</i> Tosic Acid	27	81	28	85	29	89				

Scavenging Conclusion

Clearly, Silia*MetS* DMT proves to be the preferred scavenger for palladium. As for iron, Silia*Bond* Tosic Acid was by far the best reagent. A combination of scavengers can achieve, in some cases, stronger removal of both metals. The best results were obtained using 8 equiv of each scavenger at 22°C for 16 h.

66

M. Ravn *et al.*, *Org. Proc. Res. Dev.*, **2010**, *14*, 417-424
D. Barnes *et al.*, *Org. Proc. Res. Dev.*, **2009**, *13*, 225-229
Abbott Laboratories, North Chicago, Illinois, United States

SiliaMetS in aqueous conditions

Along with growing importance of sustainable chemistry and catalysis, Silia*MetS* compatibility in aqueous conditions needed to be evaluated. As a preliminary exploration, palladium nitrate scavenging was tested at four different pH in various acidic medias. In purely aqueous conditions, Silia*MetS* TAAcOH was the most compatible and efficient scavenger. However, in acidic conditions, apart from Silia*Bond* Tosic Acid, all scavengers showed good to excellent removal capability. Scavenging activity can either be driven by H₂O+ concentration (*pH*), or its counter-ion.

Scavenging (in %) of Pd(NO ₃) ₂ in Various Aqueous Conditions, 4 equiv at 22°C, 4 h											
Scavengers	H ₂ SO ₄ (1 M)	HNO ₃ (1 M)	AcOH (1 <i>M</i>)	H ₂ O							
Silia <i>MetS</i> Diamine	43	23	> 99	5							
SiliaMetS DMT	> 99	> 99	> 99	15							
SiliaMetS Imidazole	> 99	> 99	> 99	36							
SiliaMetS TAAcOH	98	98	98	98							
Silia <i>MetS</i> Thiol	> 99	> 99	> 99	77							
SiliaMetS Thiourea	> 99	> 99	> 99	35							
Silia <mark>Bond</mark> Tosic Acid	19	6	76	28							
SiliaMetS Triamine	55	49	96	10							

Results illustrate well that the counteranion (*and counter-cation*) plays a determinant role in the affinity of the resin toward palladium.

Experimental Conditions: an aqueous 250 ppm solution of Pd(NO₃)₃ was prepared in a volumetric flask. 8 mL of this solution was introduced in 10 mL polypropylene tube charged with four molar equivalents of a metal scavenger. All scavengers were treated identically. The tubes were shaken on the SiliCycle MiniBlock® orbital shaker for four hours. All solutions were filtered on separate tubes, and the remaining palladium was measured.

Other complexes were tested using the same method described as above for scavenging of $Pd(NO_3)_3$.

Various Metallic Complexes Scavenging (<i>in %</i>) & Concentrations in Aqueous Conditions, 4 Equiv at 22°C, 4 h								
Scavenger	RuCl ₃ [150 ppm]	K ₃ PtCl ₆ [250 ppm]	FeCl ₃ [250 ppm]	RhCl ₃ [250 ppm]	Pd(NO ₃) ₂ [250 ppm]			
SiliaMetS Diamine	11	71	25	94	5			
Silia <i>MetS</i> DMT	0	97	6	68	15			
SiliaMetS Imidazole	0	91	6	59	36			
SiliaMetS TAAcOH	63	0	> 99	5	98			
SiliaMetS TAAcONa	47	87	98	7	77			
SiliaMetS Thiol	0	57	7	0	35			
SiliaMetS Thiourea	0	92	9	34	28			
SiliaBond Tosic Acid	52	87	> 99	98	99			
SiliaMetS Triamine	14	61	13	92	10			

Various Metallic Complexes Scavenging (<i>in %</i>) & Concentrations in Aqueous Conditions, 4 Equiv at 22°C, 4 h								
Scavenger	AgNO ₃ [250 ppm]	Ni(NO ₃) ₂ [250 ppm]	Sn(OTf) ₂ [250 ppm]	CuSO ₄ [250 ppm]	ZnSO ₄ [250 ppm]			
SiliaMetS Diamine	74	43	47	93	58			
SiliaMetS DMT	> 99	40	60	86	51			
SiliaMetS Imidazole	90	25	39	64	39			
SiliaMetS TAAcOH	> 99	84	93	99	86			
SiliaMetS TAAcONa	97	96	73	94	95			
SiliaMetS Thiol	96	6	6	0	0			
SiliaMetS Thiourea	79	1	17	14	3			
SiliaBond Tosic Acid	86	90	95	88	81			
SiliaMetS Triamine	76	33	58	44	58			

Conclusion

Silia*MetS* TAAcONa has shown to have very good scavenging efficiency in aqueous media. Silia*MetS* TAAcOH and Silia*Bond* Tosic Acid were also efficient. Generally speaking, many metal scavengers have demonstrated excellent performance in aqueous environment, even when bearing hydrophobic moieties.

Application Notes & Case Studies Silia*Bond* Organic Scavengers

SiliaBond trapping agent in the evaluation of tea tree essential oils as skin sensitizers

Authentic Tea Tree Oils (*especially aged ones*) have been identified as potential skin sensitizers. Thiols were used a trapping agents (*DCYA*) for isolation, characterization and identification of several possible DCYA-adducts, which can be used to deduce the structure of the candidate reactive species.

Silia*Bond* Maleimide was used to quench excess of thiols. Both Silia*Bond* Maleimide and Tosyl Chloride were tested, but Silia*Bond* Maleimide was found to be more selective in their experimental procedures.

Further studies on detection and identification of potential ingredients of concern for skin sensitization were later conducted using Silia*Bond* Maleimide as a thio-scavenger in HTS-DCYA assays.

Proteome-wide profiling of clinical PARP inhibitors to reveal compoundspecific secondary targets

Poly(ADP-ribose) polymerase (*PARP*) inhibitors (*PARPI*) are a promising class of targeted cancer drugs, but their individual target profiles beyond the PARP family, which could result in differential clinical use or toxicity, are unknown.

Using an unbiased, mass spectrometrybased chemical proteomics approach, a comparative proteome wide target map of four clinical PARPi was generated. Silia*MetS* DMT and Thiol were useful as organic scavengers for three out of the four PARPi: Niraparib (*scheme 1*), Rucaparib (*scheme 2*) and Veliparib (*scheme 3*).

 Rix, U. *et al. Cell. Chem. Biol.*, 2016, *23*, 1490-1503
H. Lee Moffitt Cancer Center & Research Institute, Tampa, United States University of California, Los Angeles, United States
University of South Florida, Tampa, United States

Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites amines

Meteoritic water-soluble organic compounds provide a unique record of the processes that occurred during the formation of the solar system and the chemistry preceding the origins of life on Earth. Hence, molecular, isotopic, and enantiomeric compositions of amines in Antarctic carbonaceous chondrites were studied.

Silia*MetS* DMT & Silia*Bond* Amine were used to purify the organic compounds from carbonaceous chondrites.

A Broad Institute case study: ionic scavenging of acids with SiliaBond carbonate & scavenging of amines with SiliaBond carboxylic acid

In the context of the synthesis of a library of highly complex macrocycles with a pyran core, SiliaBond Carbonate ($Si-CO_3$) and SiliaBond Carboxylic Acid (Si-WCX) were used in the purification process.

In the reaction below, Silia*Bond* Carbonate was used to remove excess of the acidic acylating reagent, and used again in the next step to remove excess benzoic acid. Then, Silia*Bond* Carboxylic Acid was added to remove any excess N,N-Diisopropylethylamine or potential o-acylation by-products.

Purities of various macrocycles were between 70-92 %, with an average purity of 87 %.

General Procedures

Acylation: The crude amino alcohols, cyano-fluorobenzoic acid 4-o or 4-p (0.14 mmol; 1.0 equiv), SiliaBond Carbodiimide (Si-DCC) (0.19 mmol; 1.4 equiv) and DIEA (0.090 mmol; 0.7 equiv) were combined in 2 % dimethylformamide (DMF / DCM 3.0 mL), and stirred at room temperature overnight. In cases where acylation is slow, additional Si-DCC (0.19 mmol; 1.4 equiv) and a solution of HOBt (0.03 mmol; 0.2 equiv) in DMF / DCM (1.0 mL) and DIEA base (0.03 mmol; 0.2 equiv) were added. After acylation was deemed complete, reactions were scavenged with Si-CO₃ (0.18 mmol; 1.4 equiv) and Si-WCX (0.18 mmol; 1.4 equiv) for 30 min and then filtered and evaporated for 4 h.

SNAr Macrocyclization: All crude products from above were dissolved in DMF (4.0 mL) and heated at 110° C with Cs₂CO₃ (approximately 0.61 mmol; 4.5 equiv for 4 h). Reaction mixtures were filtered through Celite, washed with DCM, and solvents evaporated. Crude products were dissolved in DCM and treated with Si-CO₃ (0.18 mmol; 1.4 equiv) and Si-WCX (0.18 mmol; 1.4 equiv) for 30 min, and then filtered through Celite and concentrated.

E. Comer et al., Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6751-6756 Chemical Biology Platform, Broad Institute, Cambridge, MA 02142

An Abbott case study: ionic scavenging of boronic acids with Silia*Bond* carbonate

An efficient Suzuki coupling protocol was developed and excess boronic acids were rapidly removed using solid-phase extraction and Silia*Bond* Carbonate to yield clean product.

General Procedure

A Smith Process vial was charged with a stir bar, 4-bromobenzonitrile, p-tolylboronic acid and 2 mL of ethanol. A solution of 1 M K_2CO_3 was added followed by the Pd catalyst. The reaction vessel was sealed and heated to 110°C for 10 minutes under microwave irradiation.

After cooling, the reaction mixture was transferred to a pre-packed column of Silia*Bond* Carbonate which had been conditioned with MeOH / CH_2Cl_2 (1:1), and the eluent was collected via gravity filtration.

The column was then washed with MeOH / CH_2CI_2 (1:1) (3 × 3 mL).

The eluents were combined, concentrated and purified by flash chromatography to yield a purified compound.

A Roche case study: nucleophilic scavenging of acyl chlorides with Silia*Bond* Amine

The guanine synthesis started with the simple and direct acylation of O-benzyl-2-aminopurine with polymeric BEMP. This convenient acylation approach using polymeric base was attempted in order to avoid the laborious Mitsunobu reaction introducing N9 substituents and tedious aqueous work-up steps. Silia*Bond* Amine was used to sequester the excess acyl chloride instead of using polystyrene-based trisamine resins.

General Procedure

Silia*Bond* Amine (1.5 equiv) was added to the reaction mixture and stirred for 1 h at room temperature. The Silia*Bond* Amine scavenger with bound acyl chloride was then filtered off and rinsed with solvent (e.g.: MeOH) to yield an acyl chloride-free solution.

70

■ K. Kim et al., Tett. Lett., 2000, 41, 3573-3576Roche Research Center, Hoffmann La-Roche, Inc., Nutley, NJ, USA

Ionic scavenging of phenols and acids with SiliaBond carbonate

The efficiency of Silia*Bond* Carbonate as a scavenger of various coupling reagents (HX) - including pentafluorophenol, N-hydroxysuccinimide (*HOSu or NHS*), 4-nitrophenol, 1-hydroxybenzotriazole (*HOBt*) and 1-hydroxy-7-azabenzotriazole (*HOAt*) - was studied, as well as a comparison with two suppliers of polymer-supported carbonate.

Phenol Scavenging Results (<i>in %</i>)						
	SiliaBond Carbonate		Polymer 1		Polymer 2	
	5 min	60 min	5 min	60 min	5 min	60 min
Pentafluorophenol ¹	98	98	92	95	85	94
N-Hydroxysuccinimide	93	> 95	41	64	40	42
4-Nitrophenol	94	96	89	95	77	88
1-Hydroxybenzotriazole ²	88	96	68	92	26	96
1-Hydroxy-7-azabenzotriazole ²	97	97	72	96	30	92

Initial concentration: 5,000 ppm - 3 equiv of SiliaBond Carbonate. Analyzed by UV. 1 Analyzed by GC-MS, 2 in THF.

Benzoic Acid Scavenging Results (in %)			
нх	Yield	Purity	
No Catalyst	35	95	
N-Hydroxysuccinimide1	67	98	
1-Hydroxybenzotriazole ²	99	98	
1-Hydroxy-7-azabenzotriazole ²	100	99	

Note: 1.0 equiv of amine, 1.5 equiv acid, 1.7 equiv catalyst (HX), 2.0 equiv Silia*Bond* Carbodiimide, 7.0 equiv Silia*Bond* Carbonate. Yield refers to the mass of isolated product. Purity was determined by GC-FID. 1 in DCM, 2 in THF.

Conclusion

For each of the various experimental conditions / coupling reagents that were tested, Silia*Bond* Carbonate yielded better to much better scavenging results than its polymer-bound Carbonate equivalents.

Silia*Bond* Carbonate was also very useful in the scavenging of benzoic acid, in the following amide coupling, using Silia*Bond* DCC as a coupling reagent.

Nucleophilic scavenging of boronic acids with SiliaBond Diol, SiliaBond Carbonate and SiliaMetS DEAM

Boronic acids and their derivatives are one of the most widespread intermediates and reagents in organic and medicinal synthesis. On-the-market drugs have even been adding boron atoms to enhance compatibility, selectivity and potency to their target molecules.

Up to very recently, boronic acids had always been reported as lacking apparent toxicity, mutagenic activity or in vivo instability issues. New studies have raised objections about this safe toxicological profile, both based on experimental and clinical data.

This is major in the chemical and pharmaceutical industry, as more and more studies denounce the genotoxicity of boronic acids. Today, in view of new data concerning boronic acids, there is pressure building on the ICH steering committee to assess boron compounds as potential genotoxic impurities (*PGIs*) per ICH M7.

All % of scavenging are determined by GC-MS

Depending on ones' needs, all three scavengers gave excellent scavenging results and showed to be an efficient and fast method for the removal of boronic acids.

SiliaMetS DEAM and SiliaBond Diol are both excellent scavengers for Catch & Release: i.e., when the molecule of interest is temporarily bound either ionically or covalently to a functionnalized silica and subsequently released, once all undesirable impurities were washed out.

72

Ionic scavenging of 2-iodobenzoic acid with SiliaBond TMA Acetate and SiliaBond Carbonate

Dess-Martin Periodinane (*DMP*) is a mild and chemoselective oxidant. It is readily accessible, environmentally benign and has a good shelf-life. Furthermore, the ease of handling, simple reaction work-up, product purification and good yields obtained with DMP make it a valuable reagent in organic synthesis.

2-Iodobenzoic acid is the degradation product from DMP formed during the work-up. Most of it can be removed with a basic work-up, but sometimes, it can be difficult to get rid of all this side product.

General Procedure

A solution of 1-octanol (1.00 mmol; 1.0 equiv) in CH_2CI_2 (6 mL) at room temperature, was added to DMP (1.10 mmol; 1.1 equiv). The reaction mixture was stirred for 16 h, then diluted with 35 mL of MTBE and poured in 20 mL of an aqueous solution of $Na_2S_2O_3$ (25 %). The mixture was stirred for 10 min. Another portion of 35 mL of MTBE was added for the liquid-liquid extraction.

The MTBE phase was then washed with water and a saturated aqueous solution of NaCl (10 mL) and dried on MgSO₄.

Scavenging was done using SiliaBond TMA Acetate or Carbonate, both in bulk (1 g) and SPE cartridge (6 mL / 1 g) for comparison purposes. Each sample was washed or eluted with a fresh portion of MTBE (8 mL) and then the 2-iodobenzoic acid concentration was monitored by GC-MS against an internal standard. The over-oxidation product (*carboxylic acid*) was succesfully scavenged using all products and formats.

Scavenging of 2-lodobenzoic Acid Results (<i>in</i> %)			
Scavenger Bulk SPE			
SiliaBond TMA Acetate	100	100	
Silia <i>Bond</i> Carbonate 100 100			

Carboxylic acids purification with SiliaBond TMA Acetate

Silia*Bond* TMA Acetate is an ion exchange media useful to extract organic anions from organic or inorganic matrices. It is less selective than Silia*Bond* TMA Chloride. The acetate anion being more labile than the chloride, it therefore retains more easily acidic compounds with pK_a in the range of 4 - 5, such as carboxylic acids.

12 mL cartridges were filled with 2 or 4 g of SiliaBond TMA Acetate (*loading of 1 mmol/g, for an equivalent of about 4 mmol of active function*). They were tested with quantities of 1 and 2 mmol of each selected acid.

General Procedure for Catch & Release Purification

- 1. 12 mL cartridges (2 or 4 g of SiliaBond TMA Acetate) were conditionned with 6 mL of MeOH.
- 2. Compound was dissolved in 1 2 mL of MeOH and loaded onto the cartridge.
- 3. Column was washed with 15 mL of MeOH.
- Compound was released with a solution of AcOH / MeOH : 2/98.
- 5. Solvents were evaporated and final compound weighted.

3-Chlorobenzoic Acid Purification Via Catch & Release

Ester Hydrolysis Purification Via Catch & Release

Conclusion

Epoxidation reactions with 3-chloroperbenzoic acid (*mCPBA*) often yield after treatment of the reaction a certain undesirable amount of 3-chlorobenzoic acid, which can sometimes be difficult to separate from the desired product.

In the present example, 4-bromostyrene was treated with mCPBA, and the reaction medium is then treated with an aqueous solution of sodium sulfite. The latter allows to destroy excess reagent and eliminates much of the 3-chlorobenzoic acid correspondent. After extraction with dichloromethane and evaporation, the product was loaded on a 12 mL TMA Acetate SPE cartridge of 2 or 4 g. A simple elution with methanol made it possible to isolate 88 % of the desired epoxide product. Similarly, the same strategy was applied for the purification of 2-nitrobenzoic acid after hydrolysis of benzyl-2-nitrobenzoate, to yield the former molecule in a 90 % final yield.

In conclusion, Silia*Bond* TMA Acetate is very useful for the purification of carboxylic acids. Conversely, it may free the reaction media from compounds having a pKa lower than 5.

Share your complete application with SiliCycle... ... and get a 5 g scavenger for free!

Send us:

- The detailed method
- Pre- and Post-treatments
- Recoveries
- HPLC or GC analysis

Ordering Information

Batch Reactor Mode (Bulk)

All Scavengers are available in the following sizes: 5 g, 10 g, 25 g, 50 g, 100 g, 250 g, 500 g, 1 kg, 5 kg, 10 kg, 25 kg, etc. Up to multi-ton scale!

SiliaMetS Metal Scavengers			
Scavenger Name Scavenger PN			
SiliaMetS AMPA	R85130B		
Silia <mark>Bond</mark> Amine (WAX)	R52030B		
SiliaMetS Cysteine	R80530B		
SiliaMetS DEAM	R54430B		
SiliaMetS DOTA	R91030B		
SiliaMetS DMT	R79030B		
SiliaMetS Diamine	R49030B		
SiliaMetS Imidazole	R79230B		
SiliaMetS TAAcOH nec	R69030B		
SiliaMetS TAAcONa nec	R69230B		
SiliaMetS Thiol	R51030B		
SiliaMetS Thiourea	R69530B		
SiliaBond Tosic Acid (SCX)	R60530B		
SiliaMetS Triamine	R48030B		

All Particle Size and Pore Size are respectively 40 - 63 μm and 60 Å. Other matrices are available upon request.

SiliaBond Organic Scavengers			
Scavenger Name	Scavenger PN		
SiliaBond Amine (WAX)	R52030B		
SiliaBond Carbonate	R66030B		
SiliaBond Carboxylic Acid (WCX)	R70030B		
SiliaMetS DEAM	R54430B		
SiliaBond DMAP	R75630B		
SiliaMetS Diamine	R49030B		
SiliaBond Diol	R35030B		
SiliaBond Guanidine	R68230B		
SiliaBond Carbamate	R50130B		
SiliaBond Maleimide	R71030B		
SiliaBond Piperazine	R60030B		
SiliaBond Propylsulfonic Acid (SCX-2)	R51230B		
SiliaBond TMA Acetate nec	R66430B		
SiliaBond Tosic Acid (SCX)	R60530B		
SiliaBond Tosyl Chloride	R44030B		
SiliaMetS Triamine	R48030B		

Available Kits

Because all matrices are unique, and that small differences can influence scavenging efficiency, we recommend first trying one of our Scavenger Kit for screening purposes, especially if you are new to this technology. Steric hindrance of the catalyst, electronic effects, solubility in solvents, all are factors that can influence the removal of your impurity.

<u>How to order</u>: simply note the Product Number which starts with "K", add a dash mark and your choice of format. Example: K30730B-10G to obtain 10 g of each one of the scavengers listed in the kit.

SiliaMetS Metal Scavenger Kits		
Kit Name	Kit PN	Composition
SiliaMetS Tin Metal Scavenger Kit	K34730B	Carbonate, Cysteine, DEAM, DMT, TAAcOH, TAAcONa, Thiourea & Thiol
SiliaMetS Universal Metal Scavenger Kit	K30730B	Cysteine, DMT, Imidazole, TAAcOH, TAAcONa, Thiol, Thiourea & Triamine
SiliaMetS Palladium Metal Scavenger Kit	K34630B	DMT, Diamine, Thiol, Thiourea, Imidazole & Triamine

	SiliaBond Scavenger Kits		
Kit Name	Kit PN	Composition	
SiliaBond Electrophile Complete Scavenger Kit	K35230B	Amine, DEAM, Diol, DMAP, TMA Acetate, Triamine, Diamine & Piperazine	
SiliaBond Nucleophile Complete Scavenger Kit	K32630B	Carbonate, Carbamate, Maleimide & Tosyl Chloride	

76

These kits are available in 5 g, 10 g, 25 g, 50 g and 100 g formats.

SiliaMetS® E-PAK® Cartridges

Y.	E-PAK Cartridges							
Turne	Labora	Laboratory Scale - 5 cm diameter		Pilot Scale - 16	Pilot Scale - 16.5 cm diameter		Commercial Scale - 16.5 cm diameter	
туре	1 cm	10 cm	25 cm	12.5 cm	25 cm	50 cm	100 cm	
SiliaFlash Irr	egular Silica Gel							
40 - 63 µm	LS-R10030B-51	LS-R10030B-510	LS-R10030B-525	PS-R10030B-1612	PS-R10030B-1625	CS-R10030B-1650	CS-R10030B-16100	
SiliaMetS Me	tal Scavengers			•				
Thiol	LS-R51030B-51	LS-R51030B-510	LS-R51030B-525	PS-R51030B-1612	PS-R51030B-1625	CS-R51030B-1650	CS-R51030B-16100	
DMT	LS-R79030B-51	LS-R79030B-510	LS-R79030B-525	PS-R79030B-1612	PS-R79030B-1625	CS-R79030B-1650	CS-R79030B-16100	
Amine	LS-R52030B-51	LS-R52030B-510	LS-R52030B-525	PS-R52030B-1612	PS-R52030B-1625	CS-R52030B-1650	CS-R52030B-16100	
Diamine	LS-R49030B-51	LS-R49030B-510	LS-R49030B-525	PS-R49030B-1612	PS-R49030B-1625	CS-R49030B-1650	CS-R49030B-16100	
Triamine	LS-R48030B-51	LS-R48030B-510	LS-R48030B-525	PS-R48030B-1612	PS-R48030B-1625	CS-R48030B-1650	CS-R48030B-16100	
Imidazole	LS-R79230B-51	LS-R79230B-510	LS-R79230B-525	PS-R79230B-1612	PS-R79230B-1625	CS-R79230B-1650	CS-R79230B-16100	
Activated Ca	Activated Carbon					<u>.</u>		
C-941	LS-C941-51	LS-C941-510	LS-C941-525	PS-C941-1612	PS-C941-1625	CS-C941-1650	CS-C941-16100	
C-944	LS-C944-51	LS-C944-510	LS-C944-525	PS-C944-1612	PS-C944-1625	CS-C944-1650	CS-C944-16100	
C-947	LS-C947-51	LS-C947-510	LS-C947-525	PS-C947-1612	PS-C947-1625	CS-C947-1650	CS-C947-16100	
C-948	LS-C948-51	LS-C948-510	LS-C948-525	PS-C948-1612	PS-C948-1625	CS-C948-1650	CS-C948-16100	

E-PAK Housings

Lab Scale

Housing Kits for Laboratory Scale E-PAK			
Housing Size	316L	Hastelloy	
5 x 1 cm	LSHK-1-S	LSHK-1-H	
5 x 10 cm	LSHK-10-S	LSHK-10-H	
5 x 25 cm	LSHK-25-S	LSHK-25-H	
5 x 1 cm + 5 x 10 cm	LSHK-110-S	LSHK-110-H	
5 x 1 cm + 5 x 25 cm	LSHK-125-S	LSHK-125-H	
5 x 1 cm + 5 x 10 cm + 5 x 25 cm	LSHK-11025-S	LSHK-11025-H	

Bowls for Laboratory Scale E-PAK Housing			
Bowl Length	316L	Hastelloy	
1 cm	LS-BOWL1-S	LS-BOWL1-H	
5 cm	LS-BOWL10-S	LS-BOWL10-H	
25 cm	LS-BOWL25-S	LS-BOWL25-H	

Pilot Scale

Housing for Pilot Scale Fixed-Bed E-PAK				
Housing Size	316L	Hastelloy		
16.5 x 12.5 cm	PSHSR-12-S	PSHSR-12-H		
16.5 x 25 cm	PSHSR-25-S	PSHSR-25-H		

Commercial Scale

Housing for Commercial Scale Fixed-Bed E-PAK				
Housing Type	316L	Hastelloy		
Single Round, 16.5 x 50 cm Single Round, 16.5 x 100 cm	CSHSR-50100-S	CSHSR-50100-H		
3-Round, 16.5 x 50 100 cm 3-Round, 16.5 x 100 cm	CSH3R-50100-S	CSH3R-50100-H		
7-Round, 16.5 x 50 & 100 cm	CSH7R-50100-S	CSH7R-50100-H		
12-Round, 16.5 x 50 cm 12-Round, 16.5 x 100 cm	CSH12R-50100-S	CSH12R-50100-H		

Fixed-Bed Mode Formats (SPE or Flash Cartridges)

SiliaPrep[™] SPE Cartridges and SiliaSep[™] Flash Cartridges

To build your SPE Cartridge Product Number, simply start with the code **SPE**, followed by the **Product Number of the scavenger** you wish your cartridge to be packed with (see page 76), followed by the **Format code**.

Example: SiliaPrep Thiourea, 6 mL, 500 mg = SPE-R69530B-06P

SiliaPrep SPE Cartridges			
Formats available	Code	Units / Box	
3 mL / 200 mg	03G	50	
3 mL / 500 mg	03P	50	
6 mL / 500 mg	06P	50	
6 mL / 1 g	06S	50	
6 mL / 2 g	06U	50	

SiliaSep[™] Flash Cartridges

To build your Flash Cartridge Product Number, simply start with the code **FLH**, followed by the **Product Number of the scavenger** you wish your cartridge to be packed with (see page 76), followed by the **Format code**.

- Examples: SiliaSep Open-Top TAAcONa, 70 mL, 10 g = FLH-R69230B-70Y
 - SiliaSep TAAcONa, 4 g = FLH-R69230B-ISO04

SiliaSep Flash Cartridges			
Formats available	Code	Units / Box	
4 g	ISO04	2	
12 g	ISO12	1	
25 g	ISO25	1	
40 g	ISO40	1	
80 g	ISO80	1	
120 g	IS120	1	
220 g	IS220	1	
330 g	IS330	1	
800 g	IS750	1	
1,600 g	11500	1	

SiliaSep ISO04 to IS330 formats

SiliaSep OT Cartridges			
Formats available	Code	Units / Box	
12 mL / 200 g	12U	20	
25 mL / 5 g	20X	20	
70 mL / 10 g	70Y	16	
70 mL / 15 g	70i	16	
70 mL / 20 g	70Z	16	
150 mL / 25 g	95K	10	
150 mL / 50 g	95M	10	
150 mL / 70 g	95N	10	
276 mL / 100 g	276F	12	

SiliaChrom[®] Guard Cartridges

Silia*Chrom* Guard Cartridges are available in lengths of 10 - 20 mm and three internal diameters (*ID: 4.0, 10 and 21.2 mm*). The Guard Cartridges internal diameter should be the same as the HPLC column or one size smaller.

Never use a guard cartridges with a larger ID than that of the HPLC column (risk of efficiency loss).

Silia <i>Chrom</i> Scavenger Guard Cartridges, 5 µm				
Formats Available (internal diameter x length in mm)	PN	Qty	Guard Holder PN	
4.0 x 10	HPLG-K34605E-A-N010	4/box	HPH-N010	
4.0 x 20	HPLG-K34605E-A-N020	4/box	HPH-N020	
10 × 10	HPLG-K34605E-A-Q010	2/box	HPH-Q010	
21.2 × 10	HPLG-K34605E-A-T010	1/box	HPH-T010	
30 × 10	HPLG-K34605E-A-V010	1/box	HPH-V010	
30 x 20	HPLG-K34605E-A-V020	1/box	HPH-V020	
30 x 30	HPLG-K34605E-A-V030	1/box	HPH-V030	

Silia <i>Chrom</i> Scavenger Guard Cartridges, 10 µm				
Formats Available (internal diameter x length in mm)	PN	Qty	Guard Holder PN	
4.0 x 10	HPLG-K34607E-A-N010	4/box	HPH-N010	
4.0 x 20	HPLG-K34607E-A-N020	4/box	HPH-N020	
10 × 10	HPLG-K34607E-A-Q010	2/box	HPH-Q010	
21.2 x 10	HPLG-K34607E-A-T010	1/box	HPH-T010	
30 × 10	HPLG-K34607E-A-V010	1/box	HPH-V010	
30 x 20	HPLG-K34607E-A-V020	1/box	HPH-V020	
30 x 30	HPLG-K34607E-A-V030	1/box	HPH-V030	

Contact us

SiliCycle, a Worldwide Network at your Service

80

SiliCycle BROSCA 2019/10

High Value Silica-based and Specialty Products for Chromatography, Analytical and Organic Chemistry, and Purification

DISCOVER OUR BROCHURES

